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We study a family of non-Abelian topological models in a lattice that arise by modifying the Kitaev model
through the introduction of single-qudit terms. The effect of these terms amounts to a reduction in the discrete
gauge symmetry with respect to the original systems, which corresponds to a generalized mechanism of
explicit symmetry breaking. The topological order is either partially lost or completely destroyed throughout
the various models. The systems display condensation and confinement of the topological charges present in
the standard non-Abelian Kitaev models, which we study in terms of ribbon operator algebras.
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I. INTRODUCTION

The subject of topological orders poses new challenges in
the understanding of new phases of matter due to novel ef-
fects in quantum many-body physics.1 There is by now a
good deal of examples in condensed matter, such as in frac-
tional Hall-effect systems,2–6 in short-range resonating va-
lence bond �RVB� models,7–10 or in quantum spin
liquids.5,11–17 There exist also exactly solvable
models,18–20,39,40 which are paradigmatic examples for exhib-
iting topological properties that can be addressed in full de-
tail since the whole spectrum of those models is known.
Although topological orders typically arise in the quantum
physics of two spatial dimensions, it is possible to construct
exactly solvable models in three spatial dimensions and
beyond.21 There is yet another field in which topological or-
ders appear naturally. It corresponds to discrete gauge theo-
ries that arise as a consequence of a spontaneous symmetry-
breaking mechanism from a continuous gauge group down to
a discrete gauge group.22–28 In these two-dimensional topo-
logical quantum field theories, the standard algebraic lan-
guage to describe the residual gauge-invariant properties of
the excitations is that of quasitriangular Hopf algebras �quan-
tum groups�.29

At the same time, quantum systems with topological order
provide new expectations for finding alternative ways of ro-
bust quantum computation.18,30,31 In fact, there are several
forms to set up schemes for topological quantum computa-
tion, some of them based on the braiding of
quasiparticles,18,32–38 some of them based solely on the topo-
logical entangled properties of the degenerate ground states,
without selective addressing of the physical qubits and with-
out resorting to braiding of excitations,39,40 and others based
on cluster states.41

Topological orders can be thought of as new forms of
long-range entanglement and they are at the crossroads of
condensed matter and quantum information.42–50 Some forms
of hidden topological orders in quantum spin chains can be
detected with string order parameters, which in turn can be
interpreted in the light of quantum information techniques,
and their long-range entanglement detected with them45 us-
ing matrix product states from condensed matter.

There are experimental proposals based on optical
lattices51,52 to implement models with Abelian topological

orders,53 and in particular, the study of the string order pa-
rameter mentioned above can also be proposed by means of
these techniques.54 There are also proposals for non-Abelian
models based on Josephson-junction arrays,55–57 in addition
to the largely studied case of the fractional quantum Hall
effect.38

One of the emblematic examples of exactly solvable mod-
els to study topological orders on a lattice is the Kitaev
model,18 both in its Abelian and non-Abelian versions. It
captures the algebraic properties exhibited by the discrete
gauge theories mentioned above. In addition, it provides us
with an explicit realization of a Hamiltonian on a lattice,
with the bonus that it allows for a model of topological quan-
tum computation.

Comparatively, there are much less works on the non-
Abelian Kitaev model than in the Abelian case �toric code�.
This is due, to some extent, to the additional mathematical
technical difficulties presented by the non-Abelian case
which is traditionally introduced with the language of quasi-
triangular Hopf algebras and their representations.58,59 Here
we have made an effort to explain its contents in full detail
and clarity with simpler algebraic tools based on group
theory and their representations. Our goal is twofold: to
make the model more accessible to a broader audience with a
previous knowledge on the Abelian toric code and to use that
simpler presentation as a starting point for considering more
general models.

In this paper we introduce a family of non-Abelian topo-
logical models on a lattice, such that the standard Kitaev
model corresponds to a particular case. More specifically, we
study a two-parameter family labeled by a pair of subgroups
N�M �G, N normal in G, where G is a discrete non-
Abelian gauge group. In the particular case N=1, M =G cor-
respond to the original Kitaev models. The Hamiltonians of
the family, denoted HG

N,M, are explicitly constructed in Eq.
�35�. The standard vertex �“electric”� operators are modified
according to the subgroup M, while the face �“magnetic”�
operators change in accordance with N. In addition, there are
new terms entering in the Hamiltonians which act on the
edges of the lattice. Since there is a qudit attached to each
edge these are single-qudit terms. Depending on the choice
of the pair of subgroups �M ,N� with respect to G, the non-
Abelian discrete gauge group of the whole Hamiltonian HG

N,M

may range from G down to the trivial group when M =N.
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This is so because the gauge group for these models turns out
to be given by G�=M /N. Therefore, the family of non-
Abelian models provides us with a mechanism of explicit
symmetry breaking of an original Hamiltonian with large
discrete gauge symmetry group. In other words, this mecha-
nism can also be seen as a symmetry-reduction mechanism,
since we may have still a smaller gauge symmetry present in
the Hamiltonian.

The new edge terms do not commute with the vertex and
face terms of the original Hamiltonian, but this can be com-
pensated by slightly changing these vertex and face terms.
This change corresponds to studying the regimen in which
the single-qudit terms have a higher coupling constant.
Choosing the models this way, we can study their ground
state and also the charge condensation phenomena. At least
in some cases, single-qudit terms can be understood as a
mechanism for introducing string tension, or more appropri-
ately “ribbon tension,” to some of the quasiparticle excita-
tions which thus get confined. In those cases, a complete
characterization of the charge types and domain-wall fluxes
will be given.

In order to facilitate both the exposition of the results and
the readability of the paper, throughout the main text we will
be giving the main constructions and results omitting many
auxiliary details or proofs. However, all of these can be
found in a well-ordered form in Appendixes A–F.

We hereby summarize briefly some of our main results. �i�
We introduce a family of Hamiltonians defined on two-
dimensional spatial lattices of arbitrary topology which ex-
hibit a variety of discrete non-Abelian gauge group symme-
try and topological orders. �ii� The ground state of the
models can be exactly given and characterized in terms of
opening a boundary ribbon operators. In many interesting
cases the spectrum of excitations can be characterized ac-
cordingly. �iii� The new models show condensation and con-
finement of the charges in the original models with Hamil-
tonian HG. �iv� In order to facilitate and complement the
study of the family of models, we have carried out a thor-
ough clarification of the main properties of the standard non-
Abelian Kitaev model. In particular, �a� the ribbon operator
algebra is introduced in an intrinsic way, with the motivation
to find operators that describe excitations. �b� We study in
detail and generalize the concept of ribbon. In particular,
closed ribbons and a related algebra are defined and their
transformation properties are described. �c� The vertex and
face operators that appear in the Hamiltonian are related to
elementary closed ribbon operators, showing that everything
in the models can be translated to the language of ribbons.
�d� We give a detailed account of two-particle states, giving
explicitly a basis for the states that clarifies the meaning of
the labels for topological charge. �v� A description of the
ground state in terms of boundary ribbon operators is given.

This paper is organized as follows. In Sec. II we treat the
standard non-Abelian Kitaev model. We start explaining the
terms appearing in the Hamiltonian and go on characterizing
the ground state and quasiparticle excitations by means of
closed ribbon operators. We also present an explicit charac-
terization of the topological charges of the model and study
when single-quasiparticle states are possible. In Sec. III we
motivate the family of non-Abelian model Hamiltonians and

present their generic properties. Then, we show how these
models exhibit topological condensation and confinement
described by domain walls. To this end we make use of
closed and open ribbon operator algebras. Section IV is de-
voted to conclusions.

Appendixes A–F deserve special attention since they con-
tain the detailed and basic explanations of all the construc-
tions used throughout the text. Specifically, Appendix A con-
tains a brief summary of representation theory for group
algebras; their centers, and induced characters. In Appendix
B we perform an extensive treatment of ribbon operators,
which are necessary to describe the whole spectrum of the
models. We define ribbons as geometrical objects and then
construct and characterize a series of ribbon operator alge-
bras. In Appendix C we study the relationship between cer-
tain ribbon transformations and the action of ribbon operator
algebras on suitable subspaces, which is a key ingredient in
describing the topological properties of the models. In Ap-
pendix D we give some details about the local degrees of
freedom that appear in the Hilbert space of two-particle ex-
citations. In Appendix E we explain why single-quasiparticle
states exist in non-Abelian models on surfaces of nontrivial
topology. Finally, in Appendix F we show several results
needed for condensation and ground-state characterization.

II. NON-ABELIAN KITAEV MODEL

A. Hamiltonian

The data necessary for building up the model, as intro-
duced by Kitaev,18 are any given finite group G and a lattice
embedded in an orientable surface. The edges of the lattice
must be oriented, as shown in Fig. 1. At every edge of the
lattice we place a qudit, that is, a �G�-dimensional quantum
system, with Hilbert space HG� with orthonormal basis
��g� �g�G�. This way, we identify HG� with the group algebra
C�G�. The Hilbert space for the whole system is then HG
ªHG�

�n, with n as the number of edges in the lattice. For
notational convenience, we will denote the inverse of ele-
ments of G as ḡ instead of the usual g−1. For completeness,
we give a recollection of some basic properties of the group
algebra C�G� in Appendix A.

Usually, when we talk about sites in a lattice we mean its
vertices. However, here we will say that a site s is a pair s
= �v , f� with f as a face and v as one of its vertices.18 The
need to consider sites will be clarified later when we discuss
the excitations of the model in terms of strips associated with

FIG. 1. The two-dimensional lattices that we consider are arbi-
trary in shape and have oriented edges. Thick lines display the
support of a face operator �left� and a vertex operator �right�.
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ribbon operators. This is in contrast with the Abelian case
where one only needs to consider strings both in the direct
and dual lattices. As it happens, to obtain a non-Abelian
generalization we need to consider vertices and faces
�plaquettes� in a unified manner through the concepts of sites
and strings and dual strings in a unified manner through the
concept of ribbons.

The Hamiltonian of interest, as introduced in Ref. 18 is

HG = − 	
v

Av − 	
f

Bf , �1�

where the sums run over vertices v and faces f . The terms Av
and Bf are projectors, called, respectively, vertex and face
operators, or electric and magnetic operators. They commute
with each other �Eq. �B37��. In what follows, we give their
explicit form.

First, we need a group of local operators at each vertex.
We label its elements as Av

g, g�G, with Av
gAv

g�=Av
gg� so that

they form a representation of G on HG. The operators Av act
only on those edges that meet at v, and this action depends
on the orientation of the edge, inward or outward v. For
example, for the vertex v of Fig. 1 we have

Av
g�x,y,z, ¯ � ª �gx,yḡ,zḡ, ¯ � , �2�

where the dots represent other qudits, which do not change.
These are the “local gauge transformation”18 operators. The
vertex operators Av that appear in the Hamiltonian are pro-
jectors onto the trivial sector of the representation of G at v,
that is

Av ª
1

�G� 	h�G

Av
h . �3�

Now let s= �v , f� be a site and ps denote the closed path
with its endpoints in v and running once and counterclock-
wise through the border of f . That is, ps is related to an
elementary plaquette. We can then consider operators Bs

g, g
�G, which project onto those states with value g for the
“product along ps.” For example, for the site s of Fig. 1 we
have

Bs
g�a,b,c,d, ¯ � ª �g,ab̄cd�a,b,c,d, ¯ � . �4�

These are the “magnetic charge”18 operators. Note that the
orientation of the edges with respect to the path is relevant.
The face operators Bf that appear in the Hamiltonian are
projectors onto the trivial flux, that is,

Bf ª Bs
1, �5�

where s is any site with s= �v , f� and 1 is the unit of G. The
operator Bf can be labeled just with the face, not with the
particular site, because if the flux is trivial for a site then it is
so for any other in the same face.

Since the Hamiltonian is a sum of projector operators, the
ground-state subspace contains those states ��� which are left
invariant by the action of the vertex and face operators,
namely,

Av��� = Bf��� = ��� , �6�

for every v and f . That is, the projector onto the ground state
is

PGS = 

v

Av

f

Bf . �7�

In the sphere or in the plane, there is no ground-state
degeneracy.18 In particular, the ground state can be obtained
easily,

��G� = PGS�1� = 

v

Av�1� , �8�

where �1� is the state with all the qudits in the state �1�.
If an eigenstate violates some of the conditions �Eq. �6�� it

is an excited state. Note that there is an energy gap from the
ground state to excited states and that excitations are local-
ized. If Av���=0, then we say that there is an electric quasi-
particle at vertex v. If Bf���=0, then we say that there is a
magnetic quasiparticle at face f . In general electric and mag-
netic charges are interrelated, as we will see, and one says
that quasiparticles are dyons that live at sites.

The excitations of these models carry topological charge.
Let us explain what this means. First, consider a configura-
tion with several excitations, far apart from each other. Each
of these excitations has a type, a property that can be mea-
sured locally and does not change.18 It is this type what we
refer as a topological charge. The point is that there exist
certain degrees of freedom with a global topological nature.
In particular, there exists a subsystem which depends on the
value of the charges and such that no local measurement is
able to distinguish its states.18 This subsystem is thus pro-
tected and a good place to store quantum information. When
two quasiparticles get close, some degrees of freedom of the
protected subsystem become local. This operation, called fu-
sion, allows us to perform measurements. Finally, one can
perform unitary operations on the protected subsystem by
suitably “braiding” the excitations.

We will not be concerned with the particular rules that
govern the processes of fusion and braiding. Instead, we only
want to be able to label the topological charges. But for this,
as we shall see, it is enough to study certain ribbon operator
algebras, which are introduced next.

B. Ribbon operators

This section is devoted to ribbon operators,18 which will
be extensively employed throughout the paper. The main
motivation is that ribbon operators describe quasiparticle ex-
citations above the ground state in the non-Abelian Kitaev
model, much like string operators describe the corresponding
excitations in the Abelian case. A full account of the proper-
ties and definitions for ribbon operators used in this section
is presented in Appendix B, especially in Appendix B 8
where a basic characterization theorem for ribbon operators
is proven.

The basic idea behind ribbon operators is the following.
First, ribbons are certain “paths” that connect sites �not ver-
tices�, as shown in Fig. 2. Suppose that for every pair of sites
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s and s� and for every ribbon � connecting them we have at
our disposal certain family of operators �O�

i �i with support in
the ribbon �. In particular, suppose that any state ��� with no
excitations along � except possibly at s and s� can be written
as

��� = 	
i

O�
i ��i� �9�

in terms of certain states ��i� which have no excitations along
� except possibly at s� but not at s. Then, any state can be
obtained from states with one excitation less by application
of such ribbon operators. In the sphere, where as we will see
there are no states with one excitation, this means that any
configuration of excited sites can be obtained from the GS by
application of ribbon operators connecting these sites. Thus,
we are addressing a situation for quasiparticle excitations
which clearly resembles that of the Abelian Kitaev model,
where strings in the dual and direct lattice have operators
attached to them that create excitations at their endpoints.

Before ribbons can be further considered, we need to give
more structure to our lattice. In particular, we will have to
deal with a “merged” lattice in which the lattice and its dual
play a simultaneous role. The reason to consider this merged
lattice is that the excitations, as commented above, are re-
lated to sites, i.e., pairs s= �v , f� of a vertex and a face. Since
the dual of a face is a vertex in the dual lattice, we could
equally well say that a site is a pair of a vertex v and a
neighboring dual vertex v�= f*. Thus, a site is best visualized
as a line connecting these two vertices, as the dashed lines
show in Fig. 2.

In order to have an oriented merged lattice, we orient the
edges of the dual lattice in such a way that a dual edge e*

crosses the edge e “from right to left,” as in Fig. 2. This can
be done because we are considering orientable surfaces only.
Just as edges connect vertices in a normal lattice, we need
something that connects sites in the merged lattice. These
connectors turn out to be certain oriented triangles that come
into two types: direct and dual triangles. A direct triangle � is
formed with two sites and an edge, as shown in Figs. 3�a�
and 3�b�. The idea is that � points from a site �0� �dashed
side to the left� to a site �1� �dashed side to the right� through

an edge e� in the direct lattice. Note that the directions of �
and e� can either match or not, as the figure shows. A dual
triangle �� is formed with two sites and a dual edge �see Figs.
3�c� and 3�d��. Again, it points from a site �0�� to a site �1��
through an edge e

��
* , which now belongs to the dual lattice.

Again, the directions of �� and e
��
* can either match or not, as

the figure shows.
Just as in a usual lattice a list of composable edges forms

a path: in the merged lattice a list of composable triangles
forms a triangle strip. So a strip is a sequence of triangles
�= ��1 , . . . ,�n� with the end of a triangle being the beginning
of the next one, �1�i=�0�i+1. The ends of a strip are �0�
=�0�1 and �1�=�1�n. A triangle strip is called a ribbon when
it does not self-overlap, except possibly on its ends. A ge-
neric example of ribbon is shown in Fig. 2. For a detailed
description of triangles, strips, and ribbons on a lattice, we
refer to Appendix B 1.

Our next task is to attach to each triangle an algebra of
operators which is enough to move quasiparticles between its
two ends in the sense of Eq. �9�. With this aim in mind, we
first define triangle operators, which are single qudit opera-
tors acting on the edge e� of a triangle �. These operators
depend on whether the triangle is direct or dual and on the
relative orientation of e�. The four possibilities are depicted
in Fig. 3. The corresponding operators are

�a� T�
g�k� = �g,k�k�, �b� T�

g�k� = �ḡ,k�k� , �10�

�c� L�
g�k� = �gk�, �d� L�

g�k� = �kḡ� , �11�

where �k� is the state of the qudit at the edge e�. Thus, the
triangle operators T�

g of direct triangles are projectors, like
the Bs

g, and the triangle operators L�
g of dual triangles form a

representation of G, like the Av
g.

We start considering a direct triangle �. Since direct tri-
angles connect sites with the same face but different vertices,

FIG. 2. Thick lines correspond to the lattice and thin lines to the
dual lattice. Arrows show the orientation of edges and dual edges.
Note that dual edges are oriented in agreement with edges �see
explanation in main text�. The shaded area is a ribbon. All the sites
that form the ribbon are displayed as dashed lines, thicker in the
case of the two sites in the ends. The arrowed thick white line
shows the orientation of the ribbon.

FIG. 3. Each figure represents a triangle � �shaded area� that
connects two sites �dashed lines�: �0� to the left and �1� to the right.
Thick lines correspond to the lattice and thin lines to the dual lat-
tice. Arrows show the orientation of edges and dual edges. �a� A
direct triangle with an edge which matches its direction. �b� A direct
triangle with an edge which does not match its direction. �c� A dual
triangle with a dual edge which matches its direction. �d� A dual
triangle with a dual edge which does not match its direction.
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triangle operators for direct triangles must be able to move
electric or vertex excitations. Let v, v� be the two vertices of
�. Then, as a special case of Eq. �B46�,

�G� 	
g�G

T�
gAvT�

g = 1. �12�

Thus, any state ��� can be expressed as

��� = 	
g�G

T�
g��g� , �13�

with ��g�= �G�AvT�
g��� as an state with no excitation at v be-

cause Av projects out electric excitations. Moreover, T�
g com-

mutes with all face operators and all vertex operators apart
from those in the ends of �, so that ��g� has no excited spots
which are not already in ���, except possibly at v�. These are
the properties we were looking for and thus we define the
algebra A� as that with basis �T�

g�g�G.
Next we consider a dual triangle �. Since dual triangles

connect sites with the same vertex but different face, triangle
operators for dual triangles must be able to move magnetic
or face excitations. Let f , f� be the two faces of �. Then, as a
special case of Eq. �B47�,

	
g�G

L�
ḡBfL�

g = 1. �14�

Thus, any state ��� can be expressed as

��� = 	
g�G

L�
ḡ��g� , �15�

with ��g�=BfL�
g��� as an state with no excitation at f because

Bf projects out magnetic excitations. Moreover, L�
g commutes

with all vertex operators apart from those in the only vertex
of � and all face operators except those from the two faces
connected by �, so that ��g� has no excited sites which are
not already in ���, except possibly at f�. These are the prop-
erties we were looking for and thus we define the algebra A�

as that with basis �L�
g�g�G.

Now that we have triangle operators at our disposal, we
can move quasiparticles at will in the sense of Eq. �9�. In
particular, if we want to move an excitation from one end of
a ribbon �= ��1 , . . . ,�n� to the other end, we just proceed
triangle by triangle. In other words, we can introduce an
algebra A�ª� iF�i

which contains a family of operators
�O�

i � with the properties related to Eq. �9�. A� can be thought
of as the algebra of all quasiparticle processes along �. Note
that it is closed under the adjoint operator, A�

†=A�.
However, if we are just interested in processes were no

quasiparticles are created or destroyed but in the ends of �,
as is the case for Eq. �9�, then A� is just too general. Instead,
we consider the ribbon operator algebra F��A�, which con-
tains those operators that do not create or destroy excitations
along �. In other words F�F� if �F ,Av�= �F ,Bf�=0 for any
vertex v and face f which do not lie in the ends of �. Note
that F� is closed under the adjoint operator because Av=Av

†,
Bf =Bf

†. These are the operators we were searching for in Eq.
�9�: a basis of F� gives the desired operators O�

i �see Eqs.
�B46� and �B47��. F� can be thought of as the algebra of
processes in which a pair of quasiparticles is created in one

end of the ribbon and then one of them is moved to the other
end. In these terms, it is clear why excited states are express-
ible by means of ribbon operators acting on ground states.

A particularly meaningful basis for F�, explicitly given in
Eq. �B66�, consists of certain operators F�

RC;uv, labeled by C,
a conjugacy class of the group G, R, an irreducible represen-
tation of certain group NC defined below, and the indices u
= �i , j�, v= �i� , j�� with i , i�=1, . . . , �C�, j , j�=1, . . . ,nR. Here
�C� is the cardinality of C and nR is the degree of the repre-
sentation R. The group NC is defined as that with elements
g�G with grC=rCg for some chosen representative rC�C.
In order to construct the operators F�

RC;uv, one also has to
choose a particular unitary matrix representation �R for R
and enumerate the elements of the conjugacy class as C
= �ci�, together with a suitable subset �qi�i=1

�C� �G such that
ci=qirCq̄i. Later we will relate the labels R, C to the topo-
logical charges of the model and show how the indices u, v
are related to local degrees of freedom at both ends of the
ribbon. We will use the following notation to denote linear
combinations of ribbon operators with the same topological
charge labels R, C:

F�
RC��� ª 	

u,v
	u,vF�

RC;uv, �16�

where 	uv�C.
In the case of Abelian groups there are no local degrees of

freedom and the elements of the basis are F�
RC=F�


,g, with
g�G and 
 as an element of the character group of G. These
operators are unitary and form a group,

F�

,gF�


�,g� = F�


�,gg�, F�


,g† = F�

̄,ḡ. �17�

Indeed, T�


ªF�


,1 are the string operators of Abelian models
and L�

g
ªF�

e,g the costring operators, with e as the identity
character.

An essential property of ribbon operators, which reflects
the topological nature of the model, is that in the absence of
excitations the particular shape of the ribbon is unimportant;
we can deform the ribbon while keeping the action of the
ribbon operator invariant. More exactly, if the state ��� is
such that the ribbon � can be deformed, with its ends fixed,
to obtain another ribbon �� without crossing any excitation,
then

F�
RC������ = F��

RC������ . �18�

This is illustrated in Fig. 4.

C. Closed ribbons

For a closed ribbon � we mean one for which both ends
coincide, so that we can set ��ª�0�=�1�. In view of the
definition of F�, in the case of closed ribbons it is natural to
consider a subalgebra K��A� such that it forgets the single
end ��. With this goal in mind, we let K��A� contain those
operators in A� that commute with all vertex and face op-
erators Av, Bf. In terms of quasiparticle processes, such
closed ribbon operators are related to processes in which a
pair of quasiparticles is created and one end of them is
moved along the ribbon until they meet again to fuse into
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vacuum. Closed ribbon operators play a fundamental role in
characterizing the ground state of the model in a similar fash-
ion as how closed strings are the building blocks for the
ground state in the Abelian case �toric code�. A detailed
analysis of closed ribbon operators is performed in Appendix
B 9.

We first consider the smallest examples of closed ribbons,
i.e., dual and direct closed ribbons. We say that a ribbon is
direct �dual� if it consists only of direct �dual� triangles. A
dual ribbon like 	 in Fig. 5 encloses a single vertex v, and
K	 has as basis the operators Av

h, h�G. A direct ribbon like
� in Fig. 5 encloses a single face f , and K� has as basis the
operators Bf

C. These are labeled by the conjugacy classes C
of G and take the form Bs

C=	g�CBs
g for any s= �v , f�. Thus,

after defining ribbon operators by means of vertex and face
operators, we now see that vertex and face operators are
themselves ribbon operators.

As for the rest of closed ribbons �, which we call proper
closed ribbons, it turns out that K� has as basis certain or-
thogonal projectors K�

RC that form a resolution of the identity,
as shown in proposition �9�. The labels R, C of these projec-
tors are the same appearing in the basis for F�. In fact, in
Sec. II D we will characterize excitations in terms of closed
ribbon operators.

The algebra K� does not see the ends of �. Because of
this, unlike F�, it can stand deformations in which the end
�� is not fixed or, for that matter, rotations of the ribbon.
More exactly, if the state ��� is such that the closed ribbon �
can be deformed to obtain another ribbon �� without cross-
ing any excitation then

K�
RC��� = K��

RC��� �19�

�see Appendix C 2�. This is illustrated in Fig. 6. Another kind
of transformation is possible for closed ribbons. In particular,
we can consider deformations plus inversions of the orienta-
tion of the ribbon, as shown in Fig. 6. When �� is a trans-
formation of � which includes an inversion we have

K�
R̄CC̄��� = K��

RC��� , �20�

where C̄ is the inverse conjugacy class of C, R̄C is the con-
jugate representation of RC, and RC is an irreducible repre-
sentation of NC̄ defined by RC�·�ªR�g · ḡ� if r̄C=grC̄ḡ for
some g�G. In Sec. II D we relate this to inversion of topo-
logical charge.

D. Topological charges

Let s0 ,s1 be two nonadjacent sites in a lattice embedded
in the sphere. From the discussion on ribbon operators it
follows that the states

�RC;uv� ª F�
RC;uv��G� �21�

form a basis for the subspace with excitations only at s0 and
s1. Here ��G� is ground state �8� and � is any ribbon with
�i�=si.

For each site s= �v , f�, we introduce the algebra Ds with
basis �Ds

hg
ªAv

hBs
g�h,g�G. The reason to introduce it is that its

action on an excitation at s gives all possible local action on
the excitation.18 In other words, Ds is useful to show why
u ,v are just local degrees of freedom. The action of the
algebras Dsi

on the states �Eq. �21�� is

Ds0

h,g�RC;uv� = �g,ci	
s=1

nR

�R
sj�n�hqi���RC;u�s�v� ,

Ds1

h,g�RC;uv� = �g,c̄i�	
s=1

nR

�̄R
sj��n�hqi����RC;uv�s�� , �22�

where u= �i , j�, v= �i� , j��, u�s�= �i�hqi� ,s�, and v�s�
= �i�hqi�� ,s�, and we set for any g�Gg¬qi�g�n�g� with
n�g��NC. Equation �22� is a consequence of Eqs. �6� and
�B69�.

FIG. 4. An example of a deformation of a ribbon. The endpoints
are fixed, and the area in between the two ribbons does not contain
any excited site, which are represented with dotted lines.

FIG. 5. Three examples of closed ribbons. � is a proper closed
ribbon, containing both dual and direct triangles. It is also a bound-
ary ribbon, as it encloses an area with the topology of a disk. 	 is a
dual closed ribbon and thus encloses a single vertex. � is a direct
closed ribbon and thus encloses a single face.

FIG. 6. Examples of closed ribbon transformations. A tubular
piece of surface is displayed. The closed ribbon �1 is a deformation
of �2 as long as there are no excitations between them. The ribbon
�3 has an inverse orientation, and thus to obtain it from �2 we have
to consider a deformation plus an inversion.
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As shown in detail in AppendixD, it is possible to find

operators du�
u��Ds0

and dv�
v��Ds1

with

du�
u�dv�

v��RC;uv� = �u,u��v,v��RC;u�v�� . �23�

Thus we see that a state with particular labels u, v can be
transformed with local operators into one with any other la-
bels u�, v�. Roughly speaking, for local operators we mean
operators which act on a neighborhood of the excitations.
More exactly, local operators should have a support which
does not connect excitations.

What about the degrees of freedom related to the labels R
and C? They can certainly be measured locally because there
exists a set of projectors Ds0

RC�Ds0
with

Ds0

RC�R�C�;uv� = �R,R��C,C��RC;uv� . �24�

However, R and C cannot be changed locally in the sense
that an operator with a support not connecting both sites and
which creates no additional excitations will not change their
values. To see this, consider two closed ribbons �0 and �1
that enclose, respectively, the sites s0 and s1 counterclock-
wise, as in Fig. 7. From the discussion in AppendixC 3 it
follows that

K�0

RC�R�C�;uv� = K�1

R̄CC̄�R�C�;uv� = �R,R��C,C��RC;uv� .

�25�

Any operator with no common support with � will commute
with the projectors K�

RC and thus cannot change the value of
R and C. In particular, any operator which changes R and C
must have a support that connects the sites s0 and s1.

Indeed, the preceding discussion shows that R and C are
the labels of the topological charges of the model. Thus the
charge of an excitation is the pair �R ,C�, with C as a conju-
gacy class of G and R as an irreducible representation of NC.
If a closed ribbon � encloses certain amount of excitations,
as in Fig. 8, the projectors K�

RC correspond to sectors with
different total topological charges in the region surrounded.
If ��� is a state with no excitations in the area enclosed by �,
we have

K�
e1��� = ��� , �26�

with e as the identity representation �see AppendixF�. Thus,
�e ,1� is the trivial charge. This offers a way to describe the
ground state of Eq. �1� as the space of states for which Eq.
�26� holds for any boundary ribbon, that is, any closed rib-
bon enclosing a disk or simply connected region.

In a region with no excitations, quasiparticles can only be
locally created in pairs so that the two excitations have op-
posite charges and the total charge in the region remains
trivial. From Eq. �20� and �25� it follows that the opposite of

the charge �R ,C� is �R̄C , C̄�

E. Single-quasiparticle states

In a sphere there do not exist states with a single excita-
tion. The reason, as shown in Fig. 9, is that any closed ribbon
� divides the sphere into two regions, both of them simply
connected. The ribbon � surrounds one of this region coun-
terclockwise, call it R1, and the other one clockwise, call it
R2. Then not only the operator K�

RC is a projector onto the
subspace with total charge �R ,C� in R1 but also a projector

onto the subspace with total charge �R̄C , C̄� in R2. Thus, if

FIG. 7. An open ribbon � that connects two sites s0 and s1 and
two closed ribbons �0 and �1 that surround counterclockwise s0 and
s1, respectively. The ribbon operators F�

h,g of the open ribbon
change the excitations at s0, s1. The ribbon operators K�0

RC, K�1

RC of
the closed ribbons project the system onto states with a given topo-
logical charge at s0, s1.

FIG. 8. A boundary ribbon � that encloses several excitations
counterclockwise. The corresponding operators K�

RC are projectors
onto the sector with total topological charge �R ,C� inside the
ribbon.

FIG. 9. A closed ribbon in a sphere. Its ribbon operators K�
RC

project onto states with topological charge �R ,C� in the upper side

of the sphere and �R̄C , C̄� in the lower side.
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there are no excitations in R1, we have a total charge �e ,1� in
R1 and also a total charge �e ,1� in R2. But a single excited
site cannot have trivial charge, and thus R2 contains either
zero or more than one excitation

What about surfaces with nontrivial topology, such as a
torus? In the case of Abelian groups, the situation is the same
as in the sphere: there are no states with a single excitation.
In the case of vertex excitations, that is, electric charges, this
follows from the fact that



v�V

Av
g = 1. �27�

For face excitations, that is, magnetic charges, an analogous
result holds. For any character 
 of G, let Bf




ª	g�G
�g�Bs
g for s= �v , f�. Then



f�F

Bf

 = 1. �28�

For non-Abelian groups, the situation is very different. In
fact, examples of single-quasiparticle states can be con-
structed �see AppendixE�.

III. CONDENSATION AND CONFINEMENT

A. Models

We want to modify the Hamiltonian HG by introducing
single qudit terms. In particular, we propose to consider pro-
jectors of the form

L�
N
ª

1

�N� 	n�N

L�
n, T�

M
ª 	

m�M

T�
m, �29�

where � is a dual or direct triangle and N, M are subgroups of
G. Thus L�

N projects out the trivial representation of N and
T�

M selects those states within M. We want to have single
qudit operators that do not depend on the orientation of the
edge e=e�. This is automatic for Te

M
ªT�

M, but in the case of
dual triangles this is true if and only if N is normal, so that
we can set Le

N
ªL�

N. That is, if n�N and g�G, then gnḡ
�N. Moreover, we want these two kinds of single-qudit
terms to commute,

�Le
N,Te

M� = 0, �30�

which is true if and only if N�M.
Now consider a Hamiltonian of the form

H = HG − 	
e

�Le
N + Te

M� , �31�

where  is a positive coupling constant and the sum runs
over edges e. The problem with this Hamiltonian is that the
new terms do not commute with HG. However, as we show
now, we can still consider the limit of large . In this limit,
the low energy sector is projected out by

P ª �
e

Te
MLe

N. �32�

Let us define the following vertex and face projectors:

Av
M
ª

1

�M� 	
m�M

Av
m, Bf

N
ª Bs

N
ª 	

n�N

Bs
n, �33�

where s= �v , f� is a site. Note that Bs
N only depends on f

because N is normal. We now make the following observa-
tion:

�M�PAv
MP = �G�PAvP ,

PBf
NP = �N�PBfP . �34�

Thus, studying the low energy sector of Eq. �31� for large 
amounts to study the sector with no edge excitations of the
Hamiltonian,

HG
N,M

ª − 	
v

Av
M − 	

f

Bf
N − 	

e

�Te
M + Le

N� . �35�

The point of these Hamiltonians is that all its vertex, face,
and edge terms commute, and thus the ground state of the
system can be exactly given. It turns out that it is related to
that of Eq. �1� but for the group G�ªM /N, as we will see in
Sec. III B. Note that HG

1,G is just the original Hamiltonian �1�
up to a constant. Although we have motivated the introduc-
tion of Eq. �35� through Eq. �31�, our aim is to study the
models HG

NM in their own right for arbitrary subgroups
N�M �G with N normal.

B. Ground state

The ground state of Hamiltonian �35� is described by the
conditions

Av
M��� = Bf

N��� = Le
N��� = Te

M��� = ��� , �36�

where v is any vertex, f any face, and e any edge. Violations
of these conditions amount to vertex, face, or edge excita-
tions. Let V be the subspace of states with no edge excita-
tions, which is projected out by the projector P of Eq. �32�. V
is a tensor product of single qudit subspaces Vª�eVM/N,
with VM/N�HG� as the subspace with orthonormal basis,

�m̃� ª �N�−1/2 	
n�N

�mn�, m̃ � M/N . �37�

Thus V�HM/N; that is, within the subspace V we are effec-
tively dealing with qudits of dimension �M /N� which are
naturally labeled through the group quotient. We denote the
corresponding isomorphism by

p:HM/N → V . �38�

Let us write

HM/N� ª pHM/Np−1, �39�

that is, HM/N� is Hamiltonian �1�, for the group M /N, applied
to the subspace VM/N. We have

HM/N� P = �HG
N,M + 2�E��P . �40�

Thus, within the sector with no edge excitations we are ef-
fectively dealing with Hamiltonian HM/N �1�. Moreover, the
ground state of HG

N,M in HG is that of HM/N� in V. The projec-
tor onto the ground state is
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PGS
N,M

ª P

v

Av
M


f

Bf
N = P


v
Av


f

Bf , �41�

where AvªpAvp−1, Bf�ªpBfp
−1, with Av and Bf acting in

HM/N. In the sphere, the normalized ground state is

��G
N,M� � PGS

N,M�1� � 

v

Av��1̃� . �42�

Thus the new edge terms in the Hamiltonian, which can
be thought of as a sort of generalized “Zeeman terms,”60

have the role of selecting a particular sector of the Hilbert
space in which a new non-Abelian discrete gauge symmetry
appears, namely, G�=M /N. Thus, edge terms amount to an
explicit symmetry-breaking mechanism, since in general the
gauge symmetry is reduced, even to a trivial one if M =N.
Alternatively, we can say that they provide a symmetry-
reduction mechanism. Thus, the sector with no edge excita-
tions is completely understood. In Secs. III C–III G we study
the meaning of edge excitations.

C. Example

Before we go on with the general case and its details, let
us first give a flavor of what is going on by considering a
family of examples. We take N=1 and M normal in G, so
that the new gauge group is G�=M. Note that in this case we
can forget about the Le

N terms because Le
1=1. Our aim is to

study the result of applying quasiparticle creation operators
�16� on a ground state of Hamiltonian �35�,

��� ª F�
RC�����G

NM� . �43�

We first consider purely magnetic quasiparticle creation
operators, fixing R as the identity representation. For sim-
plicity we set 	uv=c�C. Then from Eq. �B69� it follows
that �Av

M ,FRC����=0 for every vertex v and from Eq. �B50�
it follows that �Te

M ,FRC����=0 for any edge e not in a dual
triangle of �. Then due to Eq. �36� the state ��� can have, at
most, face excitations on the ends of � and edge excitations
on dual triangles of �. In particular, from Eqs. �36�, �B69�,
and �B52� it follows that if f is an end face of � and e is any
dual edge of � we have

Bf
1��� = u���, Te

M��� = u���� , �44�

with u ,u�=0,1. As long as C�1, we have u=0 and thus ���
contains a pair of face excitations. On the other hand, u�
=1 if C�M, which means that ��� contains a chain of edge
excitations along � if we try to create magnetic charges
which do not belong to the new gauge group G�. Therefore,
we find out that some face excitations are confined, in par-
ticular those created with C�M. By this, we mean that the
energy of ��� increases linearly with the length of � in terms
of dual triangles.

Next, we consider purely electric quasiparticle creation
operators, that is, we set C=1. Reasoning in the same way as
in the previous case, one finds out that the state ��� can have,
at most, vertex excitations on the ends of � but no face or
edge excitations. In particular, if v is an end vertex of � we
have

Av
M��� = u��� , �45�

with u=1 if the restriction of R to M is an identity represen-
tation and u=0 otherwise. That is, in some cases ��� is a
ground state although R is not trivial. Since there is no local
degeneracy in the ground state we know that ���=c��G

NM� for
some c�C. Moreover, c can be nonzero, because, as we will
see below, for 	uv=�u,v and R trivial in M,

�F�
R1�����G

NM = 1. �46�

Moreover, if � is any boundary ribbon we have for R trivial
in M

�K�
R1��G

NM =
nR�M�

�G�
. �47�

Thus, those electric charges with trivial restriction of R to M
are condensed; they are part of the ground state.

D. Condensation

Let � be a boundary ribbon, that is, a ribbon that encloses
some region r. Motivated by the previous example, we want
to study the expectation value in the ground state of HG

NM of
the operators K�

RC. Recall that these operators project onto
the space with total topological charge �R ,C� in systems with
Hamiltonian HG. Then if for a particular charge type we have

�K�
RC� ª ��G

N,M�K�
RC��G

N,M� � 0, �48�

we say that the charges �R ,C� of the original Hamiltonian
HG get condensed in the system with Hamiltonian HG

NM; if
one measures the charge of the region r in the ground state of
HG

NM there exists some probability of finding the charge
�R ,C�.

As we will show in Appendix F,

�K�
RC� =

nR�M�
�G��N�

�
R,
eM↑�NC
�C � N� , �49�

where the product �· , · �M is defined in Eq. �A1� and eM↑ is
the induced representation in G of the identity representation
of M �see Appendix A 2�. Another way to write the product
is

�
R,
eM↑�NC
=

1

�NC��M� 	g�G

�MC
g ��
R,1�MC

g , �50�

where MC
g
ªNC� ḡMg. Note in particular that for M normal

the sum has a single term, simplifying the form of Eq. �49�.
Result �49� not only shows that some of the charges are
condensed but also that the expectation value is independent
of the shape or size of the ribbon, a feature that underlines
the topological nature of the condensation. Such behavior for
a perimeter expectation is called a zero law.61

Let us consider several examples. First, under Kitaev’s
original Hamiltonian HG

1,G we have

�K�
RC� = �C,1,�R,eG

, �51�

where eG is the identity representation of G. Thus none of the
nontrivial charges is condensed, as expected. In the case N
=M =G we have
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�K�
RC� =

�C�
�G�

�R,eNC
, �52�

which means that the purely magnetic charges are con-
densed. On the contrary, in the case N=M =1 we have

�K�
RC� =

nR
2

�G�
�C,1, �53�

which means that the purely electric charges are condensed.
Another illustrative case is that of an Abelian group G. In
that case we can label the projectors as K�


,g with g�G and 

is an element of the character group of G. Then

�K�

,g� =

�M�
�G��N�

�gN,N�
M,eM
, �54�

where 
M is the restriction of 
 to M.
It is possible to show which charges condense using an-

other kind of expectation values, namely those for operators
�16�, which create a particle-antiparticle pair in original
model �1�. From the discussion in Appendix F it follows that
if �C�N�=� or �
R ,1�MC

g =0 for all g, we have

�F�
RC���� = 0. �55�

In the case of M normal, for a charge �R ,C� that is not
condensed according to Eq. �49� the operator F�

RC�	� always
has expectation value of zero. Even if M is not normal, if we
trace out the local degrees of freedom and set F�

RC

ªF�
RC��� with 	uv=�u,v we get

�F�
RC� =

1

�C�
�
R,
eM↑�NC

�C � N� . �56�

Therefore, for that particular choice we get an expectation
value which vanishes if an only if Eq. �49� does, showing
that both approaches agree. Again topology makes its ap-
pearance in the fact that the length or shape of the ribbon �
are not relevant. For Abelian groups Eq. �56� reads

�F�

,g� = �gN,N�
M,eM

. �57�

E. Confinement

The example studied in Sec. III C suggests that the edge
terms Le

N and Te
M could be interpreted as string tension terms,

which in turn would confine some of the charges of the origi-
nal model HG. However, one has to be a bit cautious with
such a viewpoint in general. Certainly, in those cases in
which N is central in M and M is normal �from now on, case
I� such a viewpoint makes sense. Only in those cases do
certain properties hold �see Appendix B 6�. In case I we can
write the relations �see Eq. �B52��

Pe,e�
NMF�

RC;uvPe,e�
NM = dRC

NMF�
RC;uvPe,e�

NM , �58�

where dRC
NM equals one �zero� if C�M and the restriction of

R to N�NC is trivial �in other case�, Pe,e�
NM =Le

NTe�
M and e

=e� ,e�=e�� with �, �� as direct and dual triangles in an open
ribbon �, respectively. Relation �58� shows that edge opera-

tors project out certain states among those which were cre-
ated by applying a string operator to a ground state. Note that
the projection only takes into account the quasiparticle labels
R, C of the string operators. Moreover, it is not important
which the particular edges are. Outside of case I such nice
properties, reasonable for string tension terms, do not hold.
As a consequence of Eq. �58�, a state of form �43� will have
a chain of edge excitations along � unless C�M and R is
trivial in N: all other charges get confined when moving from
HG to HG

NM, which means that they exist at the end of chains
of edge excitations. We shall refer to these chains of excita-
tions as domain walls. They can be labeled just as we labeled
topological charges in HG, something that we will do in Sec.
III F.

Unfortunately, as soon as any of the mentioned conditions
for case I fails many nice properties of the models are lost.
Indeed, only for those systems that fall in that class will we
be able to classify domain walls and confined charges in
terms of open an closed ribbon operator algebras in the fash-
ion of what we already did for topological charges in HG. On
the other hand, in certain more general cases it is still pos-
sible to classify domain-wall types. In particular, we will
show that this can be done in all models with N Abelian
�from now on, case II�. Interestingly enough, the domain-
wall fluxes in case II are qualitatively richer than those in
case I. Such fluxes have in general a non-Abelian character
for case II systems, whereas for case I they have always an
Abelian nature.

F. Case I systems

This section is devoted to those models HG
N,M with N cen-

tral in M and M normal in G. We will show that edge exci-
tations appear in the form of domain walls that terminate in
certain site excitations which are therefore confined. With
this goal in mind, we start introducing the excitations which
will turn out to be confined. Consider the projectors

Av
N
ª

1

�N� 	n�N

Av
n, Bf

M
ª Bs

M = 	
m�M

Bs
m. �59�

They commute among each other and with the terms of
Hamiltonian �35�, so that we could choose the energy eigen-
states to be eigenstates of projectors �59�. We say that the
state ��� has a confined excitation at a site s= �v , f� whenever
Av

NBf
M���=0. These are really excitations that follow from

Av
NBf

M��� = 0 ⇒ Av
MBf

N��� = 0, �60�

where we have used Av
NAv

M =Av
M and Bf

MBf
N=Bf

N. That they
are really confined will be revealed later, but we can already
give a clue: a state with a confined excitation at the site s
must have an edge excitation at least at one of the edges e
meeting at v or in the border of f . Thus, confined excitations
cannot appear isolated: there must be edge excitations
around them. Conversely, it is also true that a chain of edge
excitations cannot terminate without a confined excitation in
its end. However, this is not enough to demonstrate confine-
ment, but we can do it better by introducing suitable ribbon
operator algebras.
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1. Open ribbon operators

Domain walls have a type, and this type behaves as a flux
in the absence of confined excitations. We thus need a family
of projectors that distinguish between the domain-wall fluxes
that cross a particular line, analogous to the projectors K�

RC

that distinguished the topological charge in a the area en-
closed by �. So we consider as our starting point the ribbon
operator algebra F� for an open ribbon �. Since the flux
should be the same if we move the ends of our flux-
measuring ribbon in an area with no edge excitations, we
need a ribbon algebra which to some extent forgets the ends
of the ribbon. In particular, we should choose ribbon opera-
tors that do not create or destroy excitations. Thus, we define
I��F� as the subalgebra containing those operators F�F�

which commute with all vertex operators Av
M and face opera-

tors Bf
N. Such operators also commute with all edge terms Le

N

and Te
M �see colollary 12�.

As we show in proposition 11, I� is linearly generated by
certain orthogonal projectors J�


t that form a resolution of the
identity. The labels �
 , t� of these projectors are 
, an ele-
ment of the character group of N, and t, an element of the
quotient group G /M. If ��� has no edge excitations along �
then

J�
e1��� = ��� , �61�

where e and 1 are both identity elements �see Eqs. �B85� and
�F4��.

The algebra I� can stand deformations in which the ends
of � are not fixed. More exactly, if the state ��� is such that
the open ribbon � can be deformed, without fixing its ends,
to obtain another ribbon �� in such a way that no confined
excitations are crossed and the ends do not touch edge exci-
tations, then

J�

t��� = J��


t ��� �62�

�see Appendix C 2�. This is illustrated in Fig. 10. As in the
case of closed ribbons in HG, here we can consider inver-
sions in the orientation of the ribbon, as shown in Fig. 10.
When �� is a transformation of � which includes an inversion
we have

J�

t��� = J��


̄tt̄��� , �63�

where for any n�N we set 
t�n�ª
�tnt̄� �see Appendix C
2�.

When a ribbon �2 crosses two domain walls which are,
respectively, crossed by two other ribbons �3, �4 with the
same orientation as �, as in Fig. 12, we have

J�2


t = 	
�

	
k�G/M

J�3

�̄kk̄J�4

�
kt, �64�

where � runs over the group of characters �see Appendix B
10�.

2. Closed ribbon operators

Before we can further analyze the consequences of the
properties of I�, as we shall do in Sec. III F 3, we have to
introduce a family of projectors that distinguishes the
charges in our models. The situation is different to the one
we found in the models HG because now some charges are
confined, and thus the rules for deforming closed ribbons
will change qualitatively to reflect this fact. Our starting
point is the ribbon operator algebra F� for a closed ribbon �,
from which we want to select certain suitable operators, just
as we did for other projector algebras. In the case of open
ribbons just considered, we made this selection requiring that
the operators commuted with all vertex and face terms. Here
that will not be enough because since � is closed we would
be considering operators that create a closed domain wall,
with no ends and no confined excitations. Therefore, we de-
fine K�� �F� as the subalgebra containing those operators
K�F� which commute with all vertex operators Av

M, face
operators Bf

N, and edge operators Le
N ,Te

M.
As we show in proposition 14, K�� is linearly generated by

certain orthogonal projectors K�
RC that form a resolution of

the identity. The labels �R ,C� of these projectors are C, a set
of the form �mgm̄ �m�M� for some g in G, and R, an irre-
ducible representation of the group NCª �m�M �mrCm̄r̄C
�N� for some fixed rC�C. If � is a boundary ribbon sur-
rounding an area with no vertex or face excitations in the
state ���, then

K�
e1��� = ��� , �65�

where e and 1 are both identity elements �see Eqs. �B75�,
�B86�, and �F6��.

The algebra K�� can stand deformations in which the end
�� is not fixed, as long as it crosses no domain walls. If the
state ��� is such that the open ribbon � can be deformed to
obtain another ribbon �� in such a way that no vertex or face
excitations are crossed and the end of � touches no edge
excitations, then

K�
RC��� = K��

RC��� �66�

�see Appendix C 2�. This is illustrated in Fig. 11. As in the
case of closed ribbons in HG, here we can consider inver-
sions in the orientation of the ribbon, as shown in Fig. 11.
When �� is a transformation of � which includes an inver-
sion we have

FIG. 10. Examples of open ribbon transformations for I�. Edge
excitations are present only in the shaded area. No confined quasi-
particle excitations are present. The ribbon �1 is a deformation of
�3, and �2 has an inverse orientation with respect to them.
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K�
RC��� = K��

R̄CC̄��� , �67�

where RC is an irreducible representation of N
C̄
� defined by

RC�·�ªR�m · m̄� if r̄C=mrC̄m̄ for some m�M �see Appendix
C 2�.

3. Domain walls and charges

The deformation properties of the projectors in J� that we
have introduced indicate that edge excitations appear in the
form of domain walls to which a flux can be attached.
Branching points are possible in these walls. Each value of
the flux corresponds to a projector J�


t, and we know that it is
preserved along a domain wall due to deformation property
�62�. The trivial flux is given by Eq. �61� and the inverse flux
by Eq. �63�. Since deformations of J�


t only require that no
confined excitations are crossed, a domain wall can only end
in the presence of confined excitations. Domain-wall fluxes
have an Abelian nature: as indicated by Eq. �64�, the addition
of two given fluxes always produces the same combined
flux. All these ideas are reflected in Fig. 12.

Regarding charge labeling, the properties of the projectors
in K�� very much resemble those already found in the study
of K� in systems with Hamiltonian HG. The trivial charge is

given by Eq. �65� and the inverse charge by Eq. �67�. Indeed,
the new element that appears is that now deformation prop-
erties �66� take into account that the charge could be attached
to a domain wall.

But if we want to neatly describe confinement, we have to
establish the relationship between domain walls and charges.
To this end, consider Fig. 12. We can deform each ribbon �i,
without changing the flux it measures, until �i is equal to �i,
the boundary ribbon enclosing the charge at the end of the
domain wall. At that point we can compare both projector
algebras, with the following result: there exists a function f
onto the group character of N such that

J�

t = 	

C�tM
	
R

�
,f�R�K�
RC, �68�

where the sum on R runs over irreducible representations in
NC� �see Eq. �B90��. Equation �68� tells us at the end of
which domain walls can each charge exist. In other words,
the projectors in J� classify charge types from K�� in differ-
ent compartments or sectors: each of these sectors gives a
confined charge type. The different charge labels within a
sector give us the topological part of the charge. In particular,
for the trivial confined charge we recover the topological
charge types for a system with Hamiltonian HM/N, in accor-
dance with the study of the ground state of Sec. III B. Fi-
nally, all charges which do not belong to the trivial confined
charge sector are indeed confined because if we take any
circle surrounding them we must always have a domain wall
crossing it. When excitations are localized in a single site, it
turns out that confined excitations are exactly described, as
expected, by projectors �59�.

As we already did in the particular case of HG models, the
ground state can be described in terms of ribbon operators of
arbitrary size. In this case, we have to impose that no region
should contain a nontrivial charge and no line should be
crossed by a nontrivial domain-wall flux. That is, a state � is
a ground state if and only if

K�
e1��� = ���, J�

e1��� = ��� �69�

for all boundary ribbons � and proper ribbons �. This con-
ditions generalize to arbitrary N and M �see Appendix F�.

G. Case II systems

This section is devoted to those models HG
N,M with N Abe-

lian. As we have already commented, in this case we will
only be able to describe, using ribbon projector algebras,
domain-wall fluxes but not charge types, except those in the
sector with no edge excitations which are already classified
through the mapping to HM/N. Thus we proceed to describe
the algebra J�, which is defined exactly as in case I. As
discussed in Appendix B 10, in this case the projectors are
J�

RT, with T as an element of the double coset M \G /M and R
an induced representation in NT of an irreducible representa-
tion in N, with NT as the group �m�M �mrTM =rTM� for
some fixed rT�T. We recall that each element of the double
coset takes the form T= �mrTm� �m ,m��M�. From the
double coset structure, we can obtain a subalgebra of the
group algebra C�G�. Indeed, for T ,T��M \G /M we have

FIG. 11. Examples of closed ribbon transformations for K��. The
light shaded area represents edge or domain-wall excitations and
the dark shaded area confined quasiparticle excitations. The ribbon
�1 is a deformation of �2 which includes an inversion.

FIG. 12. An illustration of the relationship between domain-wall
fluxes and quasiparticle charges. The light shaded area represents
edge or domain-wall excitations and the dark shaded area quasipar-
ticle excitations. Each of the open ribbons �i can be deformed to the
boundary ribbon �i, so that the domain-wall flux measured by �i

corresponds to the confined charge measured by �i. Since �1 and �2

are equivalent up to an inversion, the confined charges measured by
�1 and �2 are inverses. The total flux in �2 is the combination of
that in �3 and �4 and thus the confined charge measured by �2 is the
combination of that measured by �3 and �4.
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TT� = 	
T��M\G/M

CTT�
T� T�, �70�

where CTT�
T� are positive integers. The rules for deformations

of J�
RT, discussed in Appendix C 2, state that the ribbon � can

move across regions in which Bf
N���= ��� and Av

N���= ��� are
satisfied, and the ends can be displaced as long as they do not
touch edge excitations, with the result that the flux measured

by J�
RT does not change. The inverse flux of �R ,T� is �R̄T , T̄�,

where M̄ contains the inverses of the elements of M and RT

is defined by RT�·�ªR�rTm · m̄r̄T� if m�M is such that M
=rTmrT̄M. Finally, there is no analog of Eq. �64� in the sense
that the knowledge of two fluxes is not enough to determine
the total combined flux. This can be seen, for example, in Eq.
�70�. When M is normal �case I�, the sum is reduced to a
single term, so that combining a flux �e ,T� with a flux �e ,T��
will give certain determinate total flux �e ,T��. This is no
longer true when M is not normal �case II�, giving a non-
Abelian nature to the domain-wall fluxes, which disappears
in case I.

IV. CONCLUSIONS

In this paper we have introduced a family of quantum
lattice Hamiltonians with a discrete non-Abelian gauge sym-
metry such that the standard Kitaev model for topological
quantum computation is a particular case of this class. The
ground state of the models can be exactly given and, in many
cases, quasiparticles or at least domain-wall excitations can
be classified. They can be characterized by operator algebras
corresponding to closed and open ribbon operators. This is
done in full generality for arbitrary topologies. The models
can be understood in terms of topological charge condensa-
tion and confinement with respect to the standard Kitaev
models.

We have given a detailed account of the quasiparticle ex-
citations in the standard non-Abelian Kitaev model. In par-
ticular, we have seen that for orientable closed surfaces other
than the sphere, such as the torus, excitations may show up
in the form of single quasiparticles.

One of the features exhibited by the family of non-
Abelian models considered in this paper is the existence of a
string tension for the motion of quasiparticle excitations. It
would be interesting to study the role of such tensions when
the action of external source of decoherence such as local
external fields or thermal effects are studied.30,62 Another as-
pect that deserves further study is the properties of these
models for topological quantum computation, since here we
have only focused on their properties as far as topological
order is concerned.
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APPENDIX A: GROUP ALGEBRAS

We present some basic properties of the algebras of finite
groups. We will find them useful for establishing several re-
sults on ribbon operator algebras in Appendix A 1. In par-
ticular, we need them to label the charges and domain walls
of our models.

1. Representations and classes

Given a finite group G, let �G�cj be the set of conjugacy
classes of G and �G�ir be the set of irreducible representa-
tions of G up to isomorphisms.63 For R� �G�ir, g�G, we
denote by Rg the image of g under R and by �R�g� the uni-
tary matrix of Rg in a particular basis. The character of a
representation R is 
R�g�ª	i�R

ii�g�. Characters are examples
of class functions �, �, �G�cj→C, for which we introduce
the product63

��,��G ª

1

�G� 	
C��G�cj

�C���C��̄�C� , �A1�

where the bar denotes complex conjugation.
The following are the well-known orthogonality relations

for irreducible representations, characters, and conjugacy
classes,:63

	
g�G

�R
ij�g��̄R�

i�j��g� =
�G�
nR

�R,R��i,i�� j,j�, �A2�

	
C��G�cj

�C�
R�C�
̄R��C� = �G��R,R�, �A3�

	
R��G�ir


R�C�
̄R�C�� =
�G�
�C�

�C,C�, �A4�

where R ,R�� �G�ir, C ,C�� �G�cj, and nR=
R�1� is the de-
gree of R. Equations �A3� and �A4� imply that ��G�cj�
= ��G�ir�. Identities �A3�, which are just a particular case of
Eq. �A2�, can be written more concisely as �
R ,
R��G
=�R,R�.

2. Induced representations

Given a finite group G and a normal subgroup H�G, let
�H ,G�cj be the set of conjugacy classes of G contained in H
and �H ,G�ir be the set of induced representations in G of
irreducible representations in H up to isomorphisms.63 Recall
that for each representation R of H there exists a representa-
tion Rind, called the induced representation of R in G, such
that for g�G,


Rind
�g� ª 	

r�G/H

R�rgr̄� , g � H

0, g � H .
� �A5�

The Frobenius reciprocity formula asserts that for �, �G�cj
→C and R� �H�ir,

����H,
R�H = ��,
Rind
�G, �A6�

where ���H is the restriction of � to H.
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Let us introduce an equivalence relation in �H�cj. For
D ,D�� �H�cj, we set D�D� if D�=gDḡ for some g�G /H.

Each C� �H ,G�cj is related to a unique equivalence class C̃
in the following way:

C = �
D�C̃

D . �A7�

Given S� �H�ir and r�G /H, define a representation Sr

� �H�ir by setting Sh
r
ªSrhr̄. We introduce an equivalence re-

lation in �H�ir. For S ,S�� �H�ir, we set S�S� if S=Sg for
some g�G /H. Each R� �H ,G�ir is related to a unique

equivalence class R̃ in the following way:


R�g� = � �G�

�H��R̃�
	
S�R̃


S�g� , g � H

0, g � H ,
� �A8�

and S� R̃ if Sind=R.
As a generalization of Eqs. �A3� and �A4� we have the

following orthogonality relations:

	
C��H,G�cj

�C�
R�C�
̄R��C� =
�G�2

�H��R̃�
�R,R�, �A9�

	
R��H,G�ir

�R̃�
R�C�
̄R�C�� =
�G�2

�H��C�
�C,C�, �A10�

where R ,R�� �H ,G�ir and C ,C�� �H ,G�cj. Equations �A9�
and �A10� imply that ��H ,G�cj�= ��H ,G�ir�. Note that Eq. �A9�
can be rewritten in terms of the product �· , · �G and derived
from Eq. �A6� as follows:

�
R,
R��G = �
S0
,
R��H =

�G�

�H��R̃�
�R,R�, �A11�

where S0� R̃. As for Eq. �A10�, it follows from Eqs. �A4�
and �A8�

	
R��H,G�ir

�R̃�
R�C�
̄R�C��

= 	
R��H,G�ir

�G�2

�H�2�R̃�
	

S,S��R̃


S�D0�
̄S��D0�

= 	
g�G/H

	
R��H,G�ir

�G�
�H� 	

S�R̃


S�D0�
̄S�gD0ḡ�

=
�G�
�D0� 	

g�G/H
�D0,gD0ḡ =

�G�2

�H��C�
�C,C�, �A12�

where D0� C̃, D0� C̃�.

3. Group algebra C[G]

Given a finite group G, the group algebra C�G� consists
of formal sums 	g�Gcgg, cg�C. We are interested in certain
representation R :G�G→GL�C�G��. Let us denote by
Rg1,g2

the image of �g1 ,g2��G�G. Then R is defined by

Rg1,g2
�g� ª g1gḡ2, g � G , �A13�

where ḡ denotes the inverse of g. It turns out that the follow-
ing isomorphism holds, as we shall check below,

C�G� � 	
R��G�ir

VR � VR̄, �A14�

where VR is the representation space of R.
With the aim of checking Eq. �A14� explicitly, let us con-

sider the following elements of C�G�:

eR
ij
ª

nR

�G� 	g�G

�̄R
ij�g�g , �A15�

where R is a representation of G and i , j=1, . . . ,nR. For irre-
ducible R, there are �G� in such elements because
	R��G�ir

nR
2 = �G� due to Eq. �A14�. In fact, they give a new

basis for C�G�,

g = 	
R��G�ir

	
i,j=1

nR

�R
ij�g�eR

ij , �A16�

which can be checked using Eq. �A4�. In this basis,

Rg1,g2
eR

ij = 	
k,l=1

nR

�R
ki�g1��̄R

lj�g2�eR
kl, �A17�

which gives explicitly isomorphism �A14� as desired. Let us
define

�	
g

cgg�ª 	
g

c̄gḡ . �A18�

Then, we have

eR
ijeR�

i�j� = �R,R�� j,i�eR
ij�, ēR

ij = eR
ji. �A19�

which follow from Eq. �A2�.

4. Algebra ZG

The center of a group algebra C�G�, denoted ZG, is the
subalgebra of elements that commute with all the elements of
C�G�. A basis for the center of C�G� is the following:

eC ª 	
g�C

g, C � �G�cj. �A20�

We have

eCeC� ¬ 	
C���G�cj

NC,C�
C� eC�, ēC = eC̄, �A21�

where C̄ denotes the inverse class of C and NC,C�
C� �0 are

integers.
With the aim of finding an alternative basis for ZG, we

define

eR ª 	
i

eR
ii, R � �G�ir, �A22�

which are a nice set of projectors,
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eReR� = �R,R�eR,

ēR = eR,

	
R��G�ir

eR = 1, �A23�

as follows from Eq. �A4�. They provide us with a new basis
for ZG since

eR =
nR

�G� 	
C��G�cj


̄R�C�eC, �A24�

eC = 	
R��G�ir

�C�
nR


R�C�eR, �A25�

as can be checked using Eq. �A4�.

5. Algebra ZH,G

Let H be a normal subgroup of G. There is a natural
inclusion C�H��C�G�. We are interested in the intersection
of their centers ZH,GªZH�ZG. A basis for the algebra ZH,G
is

eC
G
ª 	

g�C

g, C � �H,G�cj. �A26�

Its elements can be rewritten in terms of elements of ZH as
follows:

eC
G = 	

D�C̃

eD
H =

�H��C̃�
�G� 	

g�G/H
geD

Hḡ , �A27�

where we are using the notation of Eq. �A7�.
We have the aim of finding a basis of projectors for ZH,G,

analogous to Eq. �A23�. Let

eR� ª
�H��R̃�

�G�
eR

G = 	
S�R̃

eS
H, R � �H,G�ir, �A28�

so that

eR�eR�
� = �R,R�eR� ,

eR�
† = eR� ,

	
R��H,G�ir

eR� = 1, �A29�

showing also that the eR are linearly independent. Indeed,
�eR� �R� �H ,G�ir� is the desired projector basis for ZH,G be-
cause we have

eR� =
nR�R̃��H�

�G�2 	
C��H,G�cj


̄R�C�eC
G, �A30�

eC
G = 	

R��H,G�ir

�C�
nR


R�C�eR� , �A31�

where R� �H ,G�ir and C� �H ,G�cj. In order to check Eq.
�A31�, insert Eq. �A30� and apply Eq. �A10�. Finally, not that
if H belongs to the center of G we have eR� =eR

H.

APPENDIX B: RIBBON OPERATORS

In this appendix we discuss ribbon operator algebras. We
will first introduce the geometric aspects of ribbons, then we
will attach operators to ribbons, and we will finish describing
and characterizing certain projector ribbon subalgebras.
These projectors are directly related to the topological
charges and domain-wall fluxes in the models under study.

1. Sites, triangles, and strips

Our starting point is a lattice embedded in an orientable
two-dimensional manifold. Let V, E, and F be the sets of its
vertices, edges, and faces, respectively. The edges of the di-
rect and dual lattices must be oriented accordingly, as ex-
plained in the main text in Sec. II and Fig. 1. A direct edge e
points from the vertex �0e to the vertex �1e and a dual edge
e* points from the dual vertex �0e* to the dual vertex �1e*.
The shape of the lattice is arbitrary but with certain condi-
tions. Namely, �i� if e is an edge, then �0e��1e and �ii� a
face with s edges must have s different vertices. The same
conditions must hold for the dual lattice.

For each edge e�E, we introduce an inverse edge ē
which is an edge with the direction reversed, i.e., with �0ē

=�1e and �1ē=�0e. We let e� =e and denote by EextªE� Ē
the disjoint union of the original and inverse edges. For dual

edges, we set �e*�= �ē�* so that E
ext
* =E*� Ē*.

A �direct� path p is a list �v0 ,e1 ,v1 , . . . ,en ,vn� such that
vi�V, ei�Eext, �0ei=vi−1, and �1ei=vi. A dual path p* is a
list �f

0
* ,e

1
* , f

1
* , . . . , f

r
*� such that f i�F, ei�Eext, �0e

i
*= f

i−1
* ,

and �1e
i
*= f

i
*.

Sites. A site is a pair s= �v , f� with f as a face and v as one
of its vertex. We visualize sites as dashed lines connecting
the vertex v and the dual vertex f*, as shown in Fig. 13 and
use the notation s¬ �vs , fs�.

Triangles. A direct triangle �= �s0 ,s1 ,e� consists of two
sites si and a direct edge e�Eext such that �i� fs0

= fs1
, �ii�

�ie=vsi
, and �iii� s0, s1 and e form a triangle with sides listed

in counterclockwise order. We use the notation
�¬ ��0� ,�1� ,e�� and say that � points from �0� to �1�
through e�.

A dual triangle �= �s0 ,s1 ,e*� consists of two sites si and a
dual edge e*�E

ext
* such that �i� vs0

=vs1
, �ii� �ie*= f

si

*, and

�iii� s0, s1 and e* form a triangle with sides listed in clock-
wise order. We use the notation �¬ ��0� ,�1� ,e

�
*� and say that

� points from �0� to �1� through e
�
*. Each direct �dual� tri-

angle � has a complementary triangle �̄, the unique direct
�dual� triangle with e�̄= ē�.

Two triangles overlap if they “share part of their area.”
Specifically, a dual triangle � and a direct triangle �� overlap
if �i�=�i�� either for i=0 or i=1, and two triangles of the
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same type overlap if they are the same triangle. Triangles and
their properties are illustrated in Fig. 13.

Strips. A �triangle� strip of length n�0 is an alternating
sequence of sites and triangles �= �s0 ,�1 ,s1 ,
�2 , . . . ,sn−1 ,�n ,sn� with �0�i=si−1 and �1�i=si. We define
�0�ªs0 and �1�ªsn. Strips can be given just as a list of sites
�= �s0 ,s1 , . . . ,sn� or, if they have nonzero length, as a list of
triangles �= ��1 , . . . ,�n�. They could also be given as a pair
�= �s ,x�, with s=s0 as the initial site and x�2n as a binary
vector, because for any given site there exists exactly a dual
and a direct triangle pointing from it. Examples of strips are
given in Fig. 13.

Let � be a strip with si=�i�. We say that � is �i� trivial if
it has length zero, �ii� direct �dual� if it consists only of direct
�dual� triangles, �iii� proper if it is neither direct nor dual, �iv�
open if vs0

�vs1
and fs0

� fs1
, and �v� closed if s0=s1. When

� is a closed strip we write �� instead of �i�.
Two strips are composable if �1�1=�0�2. In that case the

composed strip is �=�1�2ª �s0 , . . . ,sm� with �1= �s0 , . . . ,sn�
and �2= �sn , . . . ,sm�. This composition operation is clearly
associative. The cyclic nature of the list of triangles of a
closed strip allows us to rotate it �see Fig. 13�. We say that ��
is a rotation of �, denoted �� ,����, if ����, �=�1�2, and
��=�2�1. In that case we set ����ª�1. Note that if
�� ,���� then both � and �� are closed.

We can attach both a direct and a dual path to a strip �
�see Fig. 13�. If ��1 , . . . ,�q� is the ordered list of direct tri-

angles in �, we set p�= �v�0�1
,e�1

,v�1�1
, . . . ,e�q

,v�1�q
�. Simi-

larly, if ��1� , . . . ,�r�� is the ordered list of dual triangles in �,
we set p

�
*= �f

�0�1�
* ,e

�1�
* , f

�1�1�
* , . . . ,e

�r�
* , f

�1�r�
* �.

Consider two strips �1 and �2. We say that �1 and �2 �i� do
not overlap, denoted ��1 ,�2��, if no triangle of �1 overlaps
with a triangle of �2, �ii� form a left joint, denoted ��1 ,�2��,
if �i=��i�i� with �1 as a dual triangle, �2 as a direct triangle,
and ��1� ,�2���, �iii� form a right joint, denoted ��1 ,�2��, if
�i=�i��i� with �1 as a dual triangle, �2 as a direct triangle,
and ��1� ,�2���, �iv� form a left-right joint, denoted ��1 ,�2���,
if �i=��i�i��i��� with �1 ,�1� as dual triangles, �2 ,�2� direct tri-
angles, and ��1� ,�2���, and �v� form a crossed joint, denoted
��1 ,�2�+, if �i=�i��i� with ��1� ,�2���, ��2� ,�1���, ��1� ,�2���, and
��1� ,�2���. Closed crossed joints are only possible in surfaces
of nontrivial topology �see Fig. 15�. Indeed, their name was
chosen with those cases in which �1, �2 are closed in mind.
The other joint types are illustrated in Fig. 13.

We denote by V��F�� the set of vertices �faces� in a strip
�, by E�

��E�
�� the set of edges e�Eext with e=e� for some

dual �direct� triangle � in �, and by Ē�
��Ē�

�� the set of their
inverses. If � and �� are nondirect �nondual� closed strips

with E�
�= Ē��

� �E�
�= Ē��

� �, we say that �� is a dual �direct�
complementary ribbon of �, denoted �� ,���� ��� ,����� �see
Fig. 13�.

2. Ribbons

Ribbons are strips such that its direct and dual path do not
self-cross.

Definition 1. Let � be a triangle strip, p�= �v0 , . . . ,eq ,vq�
and p

�
*= �f

0
* , . . . ,e

r
* , f

r
*�. We say that � is a ribbon if for any

triangle � in �, �̄ is not in �, for 0� i� j�q, with i�0 or
j�q, vi�v j, and for 0� i� j�r, with i�0 or j�r, f i� f j.

A rotation of a ribbon is a ribbon. Two ribbons �1 and �2
are composable if they are composable as strips and �
=�1�2 is a ribbon. If � is a ribbon and �=�1�2 as strips, then
�1 and �2 are ribbons also and ��1 ,�2��. Complementary
ribbons do not overlap.

Consider any two sites s and s�. If vs=vs�, we denote by
	s,s� the unique nontrivial dual ribbon � with �0�=s and
�1�=s�. If fs= fs�, we denote by �s,s� the unique nontrivial
direct ribbon � with �0�=s and �1�=s�. All nontrivial dual
�direct� ribbons take the form 	s,s���s,s�� for some s ,s�. We
also write 	sª	s,s and �sª�s,s. Then if �	s ,	s��� we have
	s�	s�=	s,s� and if ��s ,�s��� we have �s��s�=�s,s�.

3. Triangle operators

From this point on we are working with a fixed finite
group G. To each edge e�E we attach a Hilbert space HG�
with orthonormal basis ��g��g�G. The total Hilbert space of
our system is then HGªHG�

� �E�. If O is a single-qudit opera-
tor, Oe with e�Eext denotes that operator acting on the qudit

attached to the edge e�ē� if e�E�e� Ē�.
Before we can define operators for arbitrary ribbons we

must consider their elementary components, triangles. To this
end, let

FIG. 13. Several examples of sites, triangles, and strips. Sites
are displayed as black dotted lines when they are at end of some
ribbon. Triangles and strips are displayed as gray bands. The direct
path of each strip is a thick black line and the dual path a dashed
line. The si are sites, the �i are triangles, and the �i strips �indeed
ribbons�. �1= �s1 ,s2 ,e1� is a direct triangle and �2= �s3 ,s4 ,e

2
*� is a

dual triangle. �̄3 is the complementary triangle of �3. �4 and �5

overlap. �=�1�2 is a strip but not a ribbon. �=�3�4 and ��=�4�3

are closed strips �indeed ribbons�, with �� as a rotation of � and
����=�3. �5 is a dual complementary ribbon or �6, ��5 ,�6��, and
�7 are direct complementary ribbons of �6, ��6 ,�7��. The ribbons
�8, �9, �10, and �11 illustrate various types of joints, so that
��8 ,�10��, ��9 ,�11��, and ��8�9 ,�10�11���.
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Lh
ª 	

g�G

�hg��g�, Tg
ª �g��g�, I ª 	

g�G

�ḡ��g� .

�B1�

If � is a dual triangle, we set

L�
h
ª IxLe�

h Ix, �B2�

with x=0 �x=1� if e��E�e�� Ē�. If �� is a direct triangle, we
set

T��
g
ª IxTe��

g Ix, �B3�

with x=0 �x=1� if e��E�e�� Ē�. With these definitions we
have

L�
hL�

h� = L�
hh�, T��

g T��
g� = �g,g�T��

g ,

L�
h†

= L�
h̄, T��

g†
= T��

g ,

L�
1 = 1, 	

g�G

T��
g = 1. �B4�

As for the commutation rules, we have

L�
hT��

g = �
T��

hgL�
h if �0� = �0��

T��
gh̄L�

h if �1� = �1��

T��
g L�

h otherwise.
� �B5�

If �1��2 are dual triangles and �1�, �2� are direct triangles then

�L�1

h ,L�2

h�� = �T�1

g ,T�2

g�� = 0. �B6�

Thus, nonoverlapping triangles have commuting triangle op-
erators.

4. Ribbon operators

For each ribbon � we introduce a set of operators �F�
h,g�

with h ,g�G. We call them ribbon operators. First, if � is a
trivial ribbon we define

F�
h,g

ª �1,g. �B7�

If � is a dual triangle and �� a direct triangle we set18

F�
h,g

ª �1,gL�
h, F��

h,g
ª T��

g . �B8�

If � is an arbitrary ribbon of length l�1, we let �=�1�2 and
recursively define a gluing or composition procedure by
means of the following relations:

F�
h,g

ª 	
k�G

F�1

h,kF�2

k̄hk,k̄g. �B9�

We must of course ensure that this definition of F�
h,g is inde-

pendent of the particular choice of �1 and �2. But this
amounts to check that if �=�1�2�3 then

	
k�G

F�1

h,kF�2�3

k̄hk,k̄g = 	
k�G

F�1�2

h,k F�3

k̄hk,k̄g, �B10�

which follows by expanding F�2�3

k̄hk,k̄g and F�1�2

h,k with Eq. �B9�.
We also have to check that if �=��=��� then

F�
h,g = 	

k�G

F�
h,kF�

k̄hk,k̄g = 	
k�G

F�
h,kF��

k̄hk,k̄g, �B11�

which indeed holds true.
We will find useful the notation

T�
g
ª F�

1,g, L�
h
ª 	

g�G

F�
h,g �B12�

conceived so that

F�
h,g = L�

hT�
g = T�

gL�
h. �B13�

Also, for any S�G, g�G we set

FS,g
ª

1

�S� 	s�S

Fs,g, Fg,S
ª 	

s�S

Fg,s. �B14�

We now list several properties of ribbon operators. They
follow from the properties of triangle operators and Eq. �B9�.
For any ribbon �

F�
h,gF�

h�,g� = �g,g�F�
hh�,g, F�

h,g†
= F�

h̄,g, �B15�

L�
1 = 	

g�G

T�
g = 1. �B16�

Thus, for each �, ribbon operators linearly generate an alge-
bra closed under Hermitian conjugation. If � is dual and �� is
direct then

F�
h,g = �g,1L�

h, F��
h,g = T��

g . �B17�

If ��1 ,�2�� then

F�1

h,gF�2

k,l = F�2

hkh̄,hlF�1

h,g. �B18�

If ��1 ,�2�� then

F�1

h,gF�2

k,l = F�2

k,lḡh̄gF�1

h,g. �B19�

If ��1 ,�2��� then

F�1

h,gF�2

k,l = F�2

hkh̄,hlḡh̄gF�1

h,g. �B20�

If ��1 ,�2�+ then

F�1

h,gF�2

k,l = F�2

hkh̄,hlF�1

h,gl̄kl. �B21�

If ��1 ,�2�� then

F�1⊳�2

k,l F�1

h,g = F�1⊳�2

khḡh̄g,lF�2

l̄hl,l̄gl. �B22�

If ��1 ,�2�� then

�F�1

h,g,F�2

k,l� = 0. �B23�

Proposition 2. Let � be a ribbon, h ,g�G.
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�i� If � is dual

Tr�L�
h� = �h,1Tr�1� . �B24�

�ii� If � is direct

�G�Tr�T�
g� = Tr�1� . �B25�

�iii� If � is proper

�G�Tr�F�
h,g� = �h,1Tr�1� . �B26�

Proof. If � is not dual, choose any direct triangle � in �, so
that �=�1��2. Let ��=�1�� with �� dual. Then ��� ,��� and
thus using Eq. �B18�

Tr�F�
h,g� = Tr�L��

k F�
h,gL��

k̄ � = Tr�F�
khk̄,kgL��

k L��
k̄ � = Tr�F�

khk̄,kg� .

�B27�

If � is not direct, choose any dual triangle � in �, so that �
=�1��2. Let ��=�1�� with �� as direct. Then �� ,���� and
thus using Eq. �B18�

Tr�F�
h,g� = 	

k�G

Tr�T��
k F�

h,gT��
k �

= 	
k�G

Tr�F�
h,gT��

hkT��
k � = �h,1Tr�F�

h,g� . �B28�

Equations �B27� and �B28� together with Eqs. �B16� and
�B17� give the desired results.

As a consequence of the previous proposition and Eq.
�B15� we have the following orthogonality results.

Corollary 3. Let � be a ribbon, h ,g�G.
�i� If � is dual

Tr�L�
h†

L�
h�� = �h,h�Tr�1� . �B29�

�ii� If � is direct

�G�Tr�T�
g†

T�
g�� = �g,g�Tr�1� . �B30�

�iii� If � is proper

�G�Tr�F�
h,g†

F�
h�,g�� = �h,h��g,g�Tr�1� . �B31�

Definition 4: Rotationally invariant ribbon operators.
Given a closed ribbon �, we say that an operator F
=	h,g�Gch,gF�

h,g, ch,g�C, is rotationally invariant if for any
�� with �� ,���� we have F=	h,g�Gch,gF��

h,g. In this regard,
results �B15�, �B16�, and �B22� imply that if ��1 ,�2�� then

F�1

h,g = 	
l�G

F�1⊳�2

hḡh̄g,lF�2

l̄hl,l̄gl. �B32�

5. Vertex and face operators

We now define vertex and face operators in terms of rib-
bon operators. Let 	s ��s� be the unique dual �direct� closed
ribbon with �	s=s ���s=s�. For any site s= �v , f� let

As
h
ª F	s

h,1, Bs
g
ª F�s

1,ḡ. �B33�

Let s�, s� be sites with �	s ,	s���, ��s ,�s���. From Eqs.
�B17� and �B32� we get

As
h = As�

h , Bs
k = T�s,s�

g Bs�
ḡkg. �B34�

Thus, vertex operators are rotationally invariant and we can
write Av

h
ªAs

h for v=vs. These definitions of Av
h and Bs

g agree
with those given in Eqs. �2� and �4�.

Let us list several useful properties. If s�s� then

As
hAs

h� = As
hh�, As

1 = 1, As
h†

= As
h̄, �B35�

Bs
gBs

g� = �g,g�Bs
g, 	

g�G

Bs
g = 1, Bs

g†
= Bs

g. �B36�

As
hBs

g = Bs
hgh̄As

h, �B37�

�As
h,Bs�

g � = �As
g,As�

g�� = �Bs
h,Bs�

h�� = 0. �B38�

All these properties follow from the properties of ribbon op-
erators. Note in particular that the well-known22 flux meta-
morphosis �B37� is a consequence of �	s ,�s���.

For subgroups H, H��G, H� normal, we define the op-
erators

Av
H
ª As

H
ª L	s

H , Bf
H�

ª Bs
H�

ª T�s

H�, �B39�

where s= �v , f� is a site. We set AvªAv
G and BfªBf

1. From
Eqs. �B37� and �B38� we have for arbitrary vertices v ,v� and
faces f , f�,

�Av
H,Av�

H � = �Av
H,Bf

H�� = �Bf
H�,Bf�

H�� = 0. �B40�

Of particular interest are the commutation rules between
ribbon operators and vertex and face operators at their ends.
We first consider nonclosed ribbons. Let si=�i�. If v0�v1
then �	s0

,���, �	s1
,��� and from Eqs. �B18� and �B19� we

get

As0

k F�
h,g = F�

khk̄,kgAs0

k ,

As1

k F�
h,g = F�

h,gk̄As1

k . �B41�

If f0� f1 then �� ,�s0
��, �� ,�s1

�� and from Eqs. �B18� and
�B19� we get

Bs0

k F�
h,g = F�

h,gBs0

kh,

Bs1

k F�
h,g = F�

h,gBs1

ḡh̄gk. �B42�

If � is dual but not closed then 	s0
=	s0,s1

	s1,s0
and from Eqs.

�B9�, �B15�, and �B23� we get

Asi

k F�
h,1 = F�

khk̄,1Asi

k , �B43�

and if � is direct but not closed then �s0
=�s0,s1

�s1,s0
and from

Eqs. �B9�, �B15�, and �B23� we get

�Bsi

k ,F�
1,g� = 0. �B44�

Now we consider closed ribbons. So let � be a closed
ribbon with s=��. If � is a proper closed ribbon then
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�	s ,���� and �� ,�s��� so that from Eq. �B20� we get

As
kF�

h,g = F�
khk̄,kgk̄As

k,

Bs
kF�

h,g = F�
h,gBs

ḡh̄gkh. �B45�

If � is closed but not proper, then either �=	s or �=�s, but
for that case we already have Eq. �B37�.

Equations �12� and �14� can be generalized. Let � be a
ribbon with two ends i=0,1 and set si=�i�, vi=vsi

, and f i

= fsi
. If v0�v1 from Eq. �B41� we get

�G� 	
g�G

T�
gAvi

T�
g = 1, �B46�

and if f0� f1 from Eq. �B42� we get

	
h�G

L�
h̄Bfi

L�
h = 1. �B47�

As explained in the main text �Sec. II B�, these identities
show how ribbon operators can be used to obtain arbitrary
states with a number of excited spots from states with one
excited spot less.

6. Edge operators

For subgroups H�H��G, H normal in G, we define the
operators

Le
H
ª L�

H, Te�
H�

ª T��
H�, �B48�

where e=e�, e�=e�� with � as a dual triangle and �� as a
direct one. Then from Eqs. �B5� and �B6� we have for arbi-
trary edges e ,e�,

�Le
H,Le�

H � = �Le
H,Te�

H�� = �Te
H�,Te�

H�� = 0. �B49�

In some particular cases, triangle operators and ribbons
have nice commuting properties, but this is not always the
case. If H, H�, �, �� are as above, with � and �� either in � or
with no overlap with it then from Eqs. �B9�, �B15�, and
�B23� we have

�L�
H,F�

h,g� = �T��
H�,F�

h,g� = 0. �B50�

Other triangles are more complicated. Let �=�1�2, ��1 ,�1��,

��2 ,�2��, ��1 ,�3��, ��2 ,�4��, h�H, and k , l�G with ksk̄
=s for any s�H. Then from Eqs. �B9�, �B18�, and �B19� we
have

L�1

h F�
k,l = 	

g�G

T�1

g F�
k,ghḡlL�1

h ,

L�2

h F�
k,l = 	

g�G

T�1

g F�
k,gh̄ḡlL�2

h ,

T�3

h F�
k,l = 	

g�G

T�1

g F�
k,lT�3

hḡkg,

T�4

h F�
k,l = 	

g�G

T�1

g F�
k,lT�4

ḡk̄gh. �B51�

As a result, if N�M �G with N, M normal and N central in
M we have for any h ,g�G �=�1 �or �2� and ��=�3 �or �4�
with �i as above,

L�
NT��

MF�
h,gL�

NT��
M = �hM,M

1

�N�
Fh,NgL�

NT��
M , �B52�

which then gives Eq. �58�.

7. Algebra A�

We want to define the ribbon operator algebra F�, but as
an intermediate step we introduce the algebra A�. If � is a
trivial ribbon then A�ªC. If � is a direct �dual� triangle then
A�ªLin�T�

g �g�G� �A�ªLin�L�
h �h�G��. Finally, if �= ��i�

is an arbitrary ribbon A�ª� iA�i
. That A� is really an alge-

bra follows from Eq. �B4�.
We now proceed to show several results which are essen-

tial in order to characterize ribbon operator algebras in Ap-
pendixes B 8–B 11.

Lemma 5. Let � be a ribbon, O�A� an operator, H a
subgroup of G, and s a site.

�i� If � is not a rotation or a complement of 	s then

OAs
H = 0 ⇒ O = 0. �B53�

�ii� If � is not a rotation or a complement of �s then

OBs
H = 0 ⇒ O = 0. �B54�

�iii� If � is a dual triangle such that neither it nor its
complement belong to �,

OL�
H = 0 ⇒ O = 0. �B55�

�iv� If � is a direct triangle such that neither it nor its
complement belong to �,

OT�
H = 0 ⇒ O = 0. �B56�

Proof. First, note that As
HAs

G=As
G implies OAs

H=0⇒OAs
G

=0, and similarly for L�
H, so that it suffices to consider H

=G in these cases. Also, Bs
HBs

1=Bs
1 and similarly for T�

H, so
that it suffices to consider H=1 for them.

�i� There exists a direct triangle � such that it overlaps
with 	s but not with �, so that �T�

h ,O�=0, and a site s� such
that �	s� ,	s�� and �� ,	s��� or �� ,	s���. In the first case
As

G=As�
G and from Eq. �B41� we have 0=	gT�

gOAs�
GT�

g

= �G�−1	g,hOAs�
h T�

h̄gT�
g=OAs�

1 T�
G=O and the other case is simi-

lar.
�ii� There exists a dual triangle � such that it overlaps with

�s but not with �, so that �L�
h ,O�=0, and a site s� such that

��s� ,�s�� and ��s� ,��� or ��s� ,���. In the first case Bs
1

=Bs�
1 from Eq. �B42� we have 0=	hL�

hOBs�L�
h̄=	hOBs�

h̄ L�
hL�

h̄

=OBs�
GL�

1=O and the other case is similar.
��iii� and �iv�� The proofs are analogous to �i� and �ii�. �
Given a vertex v and a dual triangle � we set for any O

�A�,
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Ok ª Av
kOAv

k̄, Ok ª L�
kOL�

k̄. �B57�

One can check that Ok, Ok�A�. Then if � satisfies the con-
ditions of lemma 5,

�O,Av
H� = 0 ⇔ �H�O = 	

k�H

Ok, �B58�

�O,L�
H� = 0 ⇔ �H�O = 	

k�H

Ok� �B59�

because for k�H we have OkAv
H=OkA

kAv
H=Av

kOAv
H

=AkAv
HO=Av

HO=OAv giving Ok=O and similarly for Le
H. As

a consequence, we also get under the same conditions and
k�H

�O,Av
H� = 0 ⇒ �O,Av

k� = 0. �B60�

Given a site s in � and a direct triangle �, one can check
that unless � is both a nonclosed and nondirect ribbon with
f�i�

= fs, for any O�A� there exist Ok,k�, Ok,k�
� �A� such that

O=	k,k��GOk,k�=	k,k��GOk,k�
� with

Bs
gOk,k� = Ok,k�Bs

k̄gk�, T�
gOk,k� = Ok,k�T�

k̄gk�. �B61�

Then if � satisfies the conditions of lemma 5 and H is normal
in G

�O,Bf
H� = 0 ⇔ O = 	

k,k��G�k̄k��H

Ok,k�, �B62�

�O,T�
H� = 0 ⇔ O = 	

k,k��G�k̄k��H

Ok,k�
� �B63�

because OBf
H=OBf

HBf
H=Bf

HOBf
H=	k,k�Bs

HOk,k�Bs
H

=	k,k�O
k,k�Bs

k̄Hk�Bs
H=	k̄k��HOk,k�Bf

H and similarly for T�
H. As

a consequence, we also get under the same conditions and
C� �G /H�cj,

�O,Bf
H� = 0 ⇒ �O,Bf

C� = 0, �B64�

where Bf
C=	c�C	h�HBf

ch.

8. Algebra F�

In this section we characterize the ribbon operator algebra
that has been introduced so far.

Definition 6. Let � be a ribbon. The ribbon operator al-
gebra F��A� consists of those operators F�A� such that
�F ,Av�= �F ,Bf�=0 for any vertex v�v�i�

and any face f
� f�i�

, i=0,1.
Proposition 7. Let � be a ribbon. The �G�2 ribbon opera-

tors F�
h,g, h, g�G, linearly generate F�. Moreover, � is

proper if and only if they form a basis of F�.
Proof. For ribbons � of length zero or one, F�=A� be-

cause of Eq. �B23� and the first part of the statement follows
since ribbon operators generate A�. For ribbons of length l
�1, we proceed inductively on l. So let � be such a ribbon
and set �¬���, with � as a triangle. Observe that e� is not
part of �� and that �� and � share vertices or faces only at

their ends, so that F��F��ªF�� � F�= �F��
h1,g1F�

h2,g2 �hi ,gi

�G�, where �·� is the subspace linearly generated by the set
�·�. In view of Eq. �B9�, what we want to show is that

F�� = � 	
k�G

F��
h,kF�

k̄hk,k̄g�h,g � G� �B65�

is indeed equal to F�. We set s=�0�, v=vs, f = fs, and distin-
guish two cases.

(a) � is direct. In this case, F��F�� is the subalgebra of
operators commuting with Av. Then from Eqs. �B41� and

�B58� we get F�= �	k�GF��
h,kF�

k̄h�k,k̄g �h ,h� ,g�G�. Applying

F�
h,g=F�

h�,g here and in Eq. �B65� gives F�=F��.
(b) � is dual. In this case, F��F�� with F� the subalgebra

of operators commuting with Bf. Then from Eqs. �B42� and

�B62� we get F�= �F��
h,gF�

ḡhg,g� �h ,g ,g��G�. Applying F�
h,g

=F�
h,1�g,1 here and in Eq. �B65� gives F�=F��.
This completes the inductive step. The second part of the

statement follows from Eq. �B17� and corollary 3. �
We now construct an alternative basis for F�. For each

conjugacy class C� �G�cj we choose an element rC and de-
note by NC�G the subgroup of elements commuting with rC
and by QC a set of representatives of G /NC. Then for each
C� �G�cj we set C= �ci�i=1

�C� and QC= �qi�i=1
�C� so that ci=qirCq̄i.

Any g�G can be written in a unique way as g=qin, with
n�NC. We introduce index functions as follows: i�g�ª i and
n�g�ªn. For each irreducible representation R� �NC�ir, we
choose a particular basis and denote by �R�k�, k�G, the
corresponding unitary matrices of the representation. The de-
sired new basis is the following:

F�
RC;uv

ª

nR

�NC� 	
n�NC

�̄R
jj��n�F�

c̄i,qinq̄i�, �B66�

where u= �i , j�, v= �i� , j�� with i , i�=1, . . . , �C� and j , j�
=1, . . . ,nR. The inverse change is

F�
h,g = 	

R��NC�ir

	
j,j�=1

nR

�R
jj��nh,g�F�

RC;uv, �B67�

where h̄�C� �G�cj, nh,g= q̄i�h̄�gqi�ḡh̄g�, u= �i�h̄� , j�, and v

= �i�ḡh̄g� , j�� using the index functions for C. That Eq. �B66�
is really a basis follows from

Tr�F�
RC;uv†

F�
R�C�;u�v�� =

�nR�
�NC��G�

�R,R��C,C��u,u��v,v�Tr�1� .

�B68�

Instead of Eqs. �B41� and �B42� we can now write for Ds
h,g

ªAs
hBs

g, si=�i�,

Ds0

h,gFRC;uv = 	
s=1

nR

�R
sj�n�hqi��FRC;u�s�vDs0

h,gc̄i,
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Ds1

h,gFRC;uv = 	
s=1

nR

�̄R
sj��n�hqi���F

RC;uv�s�Ds1

h,ci�g, �B69�

where u= �i , j�, v= �i� , j��, u�s�= �i�hqi� ,s�, and v�s�
= �i�hqi�� ,s�.

9. Algebra K�

Here we discuss the algebra of operators that gives the
projectors onto states of different topological charge in sys-
tems with Hamiltonian HG �1�.

Definition 8. Let � be a closed ribbon. The closed ribbon
operator algebra K��A� consists of those operators K
�A� such that �K ,Av�= �K ,Bf�=0 for every vertex v and
face f .

Note that K��F�. It is not difficult to check that K	s
is

linearly generated by the operators As
h, h�G, and K�s

is
linearly generated by the operators Bs

C, with C� �G�cj and
Bs

C=	g�CBs
g. Note that these are exactly the rotationally in-

variant subalgebras of F	s
and F�s

.
For any closed ribbon � we define the operators

K�
DC

ª 	
q�QC

	
d�D

F�
qdq̄,qrCq̄, �B70�

where C� �G�cj and D� �NC�cj. The point of these operators
is that they are rotationally invariant,

��,���� ⇒ K��
DC = K�

DC, �B71�

as can be checked applying Eq. �B32�. In fact, it can be
shown that if � is proper they form a basis of the subalgebra
of rotationally invariant ribbon operators of F�. From Eqs.
�B15� and �B16� we get

K�
DCK�

D�C� = �C,C�	
D�

NDD�
D� K�

D�C,

K�
DC†

= K�
D̄C,

	
C��G�cj

K�
1C = 1, �B72�

where the sum runs over D�� �NC�cj, DD�=	D�ND,D�
D� D�,

and D̄ denotes the inverse class of D. Result �B26� implies
for any proper �,

�G�Tr�K�
DC� = �C��D,1Tr�1� , �B73�

which together with Eq. �B72� and NDD�
1 =�D̄,D��D� gives

Tr�K�
DC†

K�
D�C�� =

�D��C�
�G�

�D,D��C,C�Tr�1� . �B74�

Proposition 9. Let � be a proper closed ribbon. The op-
erators K�

DC, C� �G�cj, and D� �NC�cj, form a basis of K�.
Proof. This is just a particular case of proposition 14.
For any proper closed ribbons �, consider the subalgebra

K�
C�K� with basis �K�

DC �D� �NC�cj�. The point is that in
view of Eqs. �A21� and �B72� we have K�

C�ZC, where ZC is

the center of the group algebra C�NC�. In particular the iso-
morphism identifies KDC with eDª	h�Dh. Note that the iso-
morphism preserves adjoints as defined in Eq. �A18�. This
suggests the introduction of a different basis for K�. We
define in analogy with Eq. �A24�,

K�
RC

ª

nR

�NC� 	
D��NC�cj


̄R�D�K�
DC, �B75�

where R� �NC�ir. Due to Eq. �A25�, the reverse change of
basis is

K�
DC = 	

R��NC�ir

�D�
nR


R�D�K�
RC. �B76�

Due to Eq. �A23�, the elements of the new basis are orthogo-
nal projectors summing up to the identity

K�
RC†

= K�
RC,

K�
RCK�

R�C� = �R,R��C,C�K�
RC,

	
R,C

K�
RC = 1. �B77�

10. Algebra J�

We discuss now the algebra of operators that gives the
projectors onto states with different domain-wall types in
systems with Hamiltonian HG

NM �35�, with N�M �G sub-
groups, N normal in G.

Definition 10. Let � be an open ribbon. The ribbon op-
erator algebra J��F� consists of those operators J�F�

such that �J ,Av
M�= �J ,Bf

N�=0 for every vertex v and face f .
We denote by rT an arbitrarily chosen representative of a

class T of the double coset M \G /M, by NT�M the sub-
group of elements m such that mrTM =rTM, and by QT a set
of representatives of M /NT. For any open ribbon � we define
the operators

J�
CT

ª 	
q�QT

	
c�C

F�
qcq̄,qrTM , �B78�

where C� �N ,NT�cj and T�M \G /M. From Eq. �B15� we
get

J�
CTJ�

C�T� = �T,T�	
C�

NCC�
C� J�

C�T,

J�
CT†

= J�
C̄T,

	
T�M\G/M

J�
1T = 1, �B79�

where the sum runs over C�� �N ,M�cj, CC�=	C�NC,C�
C� C�

and C̄ denotes the inverse class of C. From Eq. �B26� we get

�G�Tr�J�
CT� = �T��C,1Tr�1� , �B80�

which together with Eq. �B79� and NCC�
1 =�C̄,C��C� gives
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�G�Tr�J�
CT†

J�
C�T�� = �C��T��C,C��T,T�Tr�1� . �B81�

Proposition 11. Let � be an open ribbon. The operators
J�

CT, C� �N ,NT�cj, T�M \G /M, form a basis of J�.
Proof. Set �vi , f i�=�i� and let F���F� be the subalgebra

of operators commuting with Avi

M. From Eqs. �B41� and
�B58� we get F��= �	m�MF�

mhm̄,mgM �h ,g�G�. J��F�� is the
subalgebra of operators commuting with Bfi

N. From Eqs.
�B42� and �B62� we get J�= �	m�MF�

mhm̄,mgM �h�N ,g�G�.
Finally, if h�C� �N ,NT�cj and g�T�M \G /M we have
	m,�MF�

mhm̄,mgM =
�NT�
�C� J�

CT. The result follows in view of Eq.
�B81�. From the previous proposition and Eqs. �B9�, �B51�,
and �B52� we get the following result, which is no longer
true if the condition of N being Abelian is removed.

Corollary 12. Let � be an open ribbon and e an edge. If N
is Abelian �J ,Le

N�= �J ,Te
M�=0 for any J�J�.

For any open ribbon � and T�M \G /M, consider the sub-
algebra J�

T�J� with basis �J�
CT �C� �N ,NT�cj�. The point is

that in view of Eqs. �A21� and �B79� we have JC�ZN,NT
. In

particular the isomorphism identifies JCT with eC
M. Note that

the isomorphism preserves adjoints as defined in Eq. �A18�.
This suggests the introduction of a different basis for J�. We
define in analogy with Eq. �A30�,

J�
RT

ª

nR�R̃��N�
�NT�2 	

C��N,NT�cj


̄R�C�J�
CT, �B82�

where R� �N ,NT�ir. Due to Eq. �A31�, the reverse change of
basis is

J�
CT = 	

R��N,NT�ir

�C�
nR


R�C�J�
RT. �B83�

Due to Eq. �A29�, the elements of the new basis are orthogo-
nal projectors summing up to the identity

J�
RT†

= J�
RT,

J�
RTJ�

R�T� = �R,R��T,T�J�
RT,

	
R,T

J�
RT = 1. �B84�

Two comments should be made here. First, in the particu-
lar case of M normal in G, M \G /M =G /M and for T
�G /M we have NT=M, so that the two labels for the basis
of J� are not related anymore. Second, although definition
10 only applies to open ribbons, the algebra J� can be ex-
tended to any � taking proposition 11 as a definition. As long
as � is proper, properties �B79�–�B84� will still hold.

The special case of M normal and N central in M deserves
special attention. Instead of Eqs. �B78� and �B82� we can
write

J�
n,t
ª Fn,tM, J�


,t
ª

1

�N� 	n�N


̄�n�J�
n,t, �B85�

where n�N, t̃�G /M, and 
� �N�ch, with �N�ch as the char-
acter group of N. Then, if �=�1�2 is an open ribbon from Eq.
�B9� we get Eq. �64�.

11. Algebra K��

Here we discuss the algebra of operators that gives the
projectors onto states of different charge, confined and topo-
logical, in systems with Hamiltonian HG

NM �35�, where
N�M �G are normal subgroups in G with N central in M.

Definition 13. Let � be a closed ribbon. The closed rib-
bon operator algebra K�� �F� consists of those operators K
�F� such that �K ,Av

M�= �K ,Bf
N�= �K ,Te

M�= �K ,Le
N�=0 for

any vertex v, face f , and edge e.
Note that if N=1 and M =G, then K�� =K�. We extend our

previous notation and set �A ,B�cj� ��bab̄ �b�B� �a�A� for
two subgroups A ,B of some other group. For each class C
� �G /N ,M /N�cj, we choose a representative rC�G. Let
NC� ª �m�M �mrCm̄r̄C�N� and choose a set QC�M of rep-
resentatives of M /NC� . For any closed ribbon � we define the
operators

K�
DC

ª 	
q�QC

	
d�D

	
n�N

F�
qdq̄,qrCq̄n, �B86�

where C� �G /N ,M /N�cj and D� �NC� �cj. With this notation,
results �B72� remain true, and Eqs. �B73� and �B88� only
need a slight modification,

�G�Tr�K�
DC� = �C��N��D,1Tr�1� , �B87�

Tr�K�
DC†

K�
D�C�� =

�D��C��N�
�G�

�D,D��C,C�Tr�1� . �B88�

Proposition 14. Let � be a proper closed ribbon. The
operators K�

DC, C� �G /N ,M /N�cj, D� �NC� �cj, form a basis
of K�� .

Proof. Set �v , f�=�� and let F�� �F� be the subalgebra of
operators commuting with Av

M and Bf
N. From Eqs. �B45�,

�B58�, and �B62� we get F�� = �	m�MF�
m̄hm,m̄gm �h ,g

�G ,hgh̄ḡ�N�. K�� �F�� is the subalgebra of operators com-
muting with Le

N and Te
M for every edge e. From Eqs. �B50�,

�B51�, �B59�, and �B63� it follows that K�

= �	m�M	n�NF�
mhm̄,mgm̄n �h�M ,g�G ,hgh̄ḡ�N�. But given

such h and g there exists a class C� �G /N ,M /N�cj and q
�QC with q̄gqr̄C�N and a class D� �NC� �cj with q̄hq�D,

so that 	m�M	n�NF�
mhm̄,mgm̄n=

�NC� �
�D� K�

DC= �M�
�C��D�K�

DC. The result
follows in view of Eq. �B88�.

The change in basis �B75� that leads to relations �B77� is
possible for K�� just as it was for K�, with the only difference
that now the representations R belong to �NC� �ir. For any
proper closed ribbon we have J��K�� . In fact

J�
nt = 	

C�tM

K�
nC, �B89�

where n�N, t�G /M, C� �G /N ,M /N�cj, and K�
nC=K�

DC

with D= �n�� �N ,NC� �cj� �NC� �cj. From Eqs. �B76�, �B82�,
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and �B89� we get the following relation between the corre-
sponding projector bases:

J�

t = 	

C�tM
	

R��NC� �ir

�
R,
�N

nR
K�

RC, �B90�

where 
� �N�ch, t�G /M, and C� �G /N ,M /N�cj.

APPENDIX C: RIBBON TRANSFORMATIONS

In this appendix we discuss several transformations that
can be applied to ribbons. These transformations are interest-
ing because they leave invariant the action of certain ribbon
operator algebras on suitable subspaces of HG. In order to
proof the desired properties, we need some preliminary re-
sults. We will find useful the notation ·=�· for ·���= · ���.
Also, for strips � ,�� and a triangle �, we write �� ,� ,���� if �
is direct, �� ,���, ��� ,���, and we write �� ,� ,���� if � is
dual, �� ,���, �� ,���� �see Fig. 14�.

Lemma 15. Let �, �� be ribbons, ����HG and H ,H��G
normal subgroups with hh�=h�h for any h�H, h��H�. �i�
If �� ,����, there exist a direct triangle � such that �� ,� ,����

and for any f �F�− �f�0� , f�1�� we have Bf
H=�1 then for h�

�H�

L�
h�=� 	

k,l�G

F��
lk̄h̄�kl̄,lT�

k. �C1�

�ii� If �� ,���� then for g�G

T�
g=�T��

ḡ . �C2�

Proof. �i� Let p
�
*= �f

0
* , . . . ,e

r
* , f

r
*� and set si= ��0ei+1 , f i� for

i=1, . . . ,r−1. Consider the states ��g,h�
ªLe1

H�T�
gLe2

H�Bs1

h1
¯Ler

H�Bsr−1

hr−1���, g�G, h�Hr−1. Then Lei

H�

=�g,h1 and thus L�
H�=�g,hL��

H�=�g,h1. But ���

=	g�GT�
g	h�Hr−1
i=1

r−1Bsi−1

hi ��g� and the result follows using

Eq. �B51� and the fact that �L�
k ,Bsi

h �= �L��
k ,Bsi

h �=0 for k�H�,
h�H. �ii� The proof is dual to �i�. Just note that one must use

	k�GL�
k̄Te1

1 L�
k=1 instead of 	k�GT�

kLe1

H�T�
k=1 and

	k�GAvi−1

k̄ Tei

1 Avi−1

k =1 instead of 	k�HBfi−1

k Lei

H�Bsi−1

k =Bfi−1

H . Al-
ternatively, the result is trivial in terms of Wilson loops.

When working with ribbon deformations, it is useful to
consider triangle strips that are more general than ribbons but
still allow to introduce operators. We say that a strip � is nice
if no two of its triangles overlap or, equivalently, if �
=�1¯�n with �i ribbons such that ��i ,� j�� for i� j. Then
ribbon operators can be generalized for nice strips using Eq.
�B9�. Although such nice strip operators still commute with
all vertex operators Av and face operators Bf except those in
their ends, they can no longer be characterized by this prop-
erty. A direct �dual� block � is a nice closed strip such that
�� ,��� ��� ,���� �see Fig. 14�.

Lemma 16. Let � be a nice closed strip, ����HG and
H�G a normal subgroup. �i� If � is a dual block and for any
v�V� we have Av

H=�1 then

L�
H=�1. �C3�

�ii� If � is a direct block and for any f �F� we have Bf
H=�1

then

T�
H=�1. �C4�

Proof. �i� We proceed recursively on �V��. For �V��=0,1
the result is trivial. So let �V���1. Note that if �� ,���� then
L�

H=L��
H due to Eq. �B32�. Also, the path p�= �v0 , . . . ,eq ,vr�

forms a tree. Thus, w.l.o.g. we can choose � such that v1
=vr−1 and there exists a dual triangle � such that �=�1�2 with
	ª	�0�=�1� and ��2 ,� ,�2��. Set �2=���3�̄�, with �� as a

direct triangle. Then L�
h�=L�1

h�L�2

h�=L�1

h�	k�GT��
k L�3

k̄h�k

=�L�1

h�	k�GT��
k L�̄

k̄h�k=L�1

h�L�
h�=L	

h�=�1, where we have used the
fact that �3�̄ is a block and Eq. �C1� for � , �̄. �ii� Again the
proof is dual to �i� or, alternatively, trivial in terms of Wilson
loops. �

Corollary 17. Let �=�1�2 be a nice strip. Under the same
conditions of the previous lemma we have, respectively, �i�
for h�H

L�1

h =� 	
g�G

T�1

g L�2

ḡh̄g, �C5�

�ii� for g�G

T�1

gH=�T�2

ḡH. �C6�

Proof. Apply Eqs. �B9� and �B15� to �i� Eq. �C3� and �ii�
Eq. �C4�.�

For a region R we will understand a collection of faces f .
We also consider dual regions R*, collections of dual faces
v*.

FIG. 14. Several constructions with nice strips and ribbons. All
elements are displayed as in Fig. 13. The �i are ribbons, except �5

and �6 which are just nice strips. We have ��1 ,�1 ,�2�� and
��3 ,�2 ,�4��. �5 is a dual block and �6 is a direct block. �7 and �8

form a simple deformation, ��7 ,�8�=.
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1. Transformation rules

a. Deformations

Before we define general ribbon deformations, such as the
one in Fig. 4, we have to introduce certain simpler ones
which are easier to manage in proofs, as the one depicted in
Fig. 14. Then simple deformations can be combined together
to give the general ones. We say that the ribbons �, �� form
a simple deformation, denoted �� ,���=, if �i� they are open,
�ii� they share no triangles, �iii� �� ,�����, and �iv� for any
e�E�

� we have �1e�V��. The dual of �iv� is automatically
true: for any e�E��

� we have f �F� for f*=�1e*. We will use
the notation F�,��=F�− �fs0

, fs1
� and V�,��=V��− �vs0

,vs1
�,

where si=�i�=�i��.
Let R= �R1 ,R

2
*� with R1 as a region and R

2
* as a region of

the dual lattice. We introduce the relation between ribbons
�R as the minimal equivalence relation such that �1��R�1� if
the following conditions are all true: �1=�2��3, �1�=�2���3,
�� ,���=, F�,���R1, and V

�,��
* �R

2
*. Thus, two ribbons are

equivalent in the sense of �R if they can be transformed one
into the other through simple deformations within R. Given a
state ����HG and subgroups H ,H��G, H normal, we de-

fine R�
HH�= �R1 ,R

2
*� with R1 as the region such that f �R1 if

Bf
H=�1 and R

2
* as the dual region such that v*�R

2
* if Av

H�

=�1. Then we write ��
HH� for �R

�
HH�.

Proposition 18. Let ����HG and H ,H��G normal sub-
groups with hh�=h�h for any h�H, h��H�. If �, �� are

ribbons with ���
H,H��� then

F�
h�,S=�F��

h�,S, �C7�

where h��H�, S�G /H.
Proof. Using Eq. �B9� for �=�1�2�3 we can write

F�
h�,gH = 	

l,m�G

F�1

h�,lF�2

l̄h�l,l̄gmHF�3

m̄ḡh�gm,m̄, �C8�

and thus it is enough to consider simple deformations
�� ,���=. In that case, we can set �=�1�1�1� with �1 ,�1� dual
triangles and there exists a ribbon �2 such that �1�2 is a block
and the conditions of lemma 16 �ii� are satisfied, so that Eq.
�C6� applies. But ��2 ,����, so that using Eq. �C2� we get

T�
S=T�1

S =�T�2

S̄ =T��
S . We can write �2= �̄2��2��̄2 and ��=�2�3�2�

with �2 ,�2� direct triangles and set �2�= �̄1�2��̄1�. Then �� ,�2���

and Eq. �C1� apply. Also, �2��3 is a block and the conditions
of lemma 16 �i� are satisfied, so that Eq. �C5� applies �for

H��. Putting everything together we get L�
h�

=�	k,l�GF
�2�
lk̄h̄�kl̄T�2

k =�	k�GL�2

k̄h�kT�2

k =�L��
h�, where we have used

also Eqs. �B9� and �B16�.

b. Extensions, contractions, and rotations

We also want to consider deformations in which the ends
of ribbons are not fixed. Let Q= �Q1 ,Q

2
*� with Q1 ,Q2�Eext.

We introduce the relation between ribbons �Q as the mini-
mal equivalence relation such that ��Q�� if �=�1���2,
E�i

��Q1, and E�i

��Q2. Thus, two ribbons are equivalent in

the sense of �Q if they can be transformed from one into the
other through extensions or contractions within Q. We also

introduce an equivalence relation ≖Q for closed ribbons, the

minimal such that � ≖Q�� if �� ,����, E����
� �Q1, and

E����
� �Q2. Thus, two closed ribbons are equivalent in the

sense of ≖Q if they can be transformed one into the other

through rotations within Q. Given a state ����HG and sub-

groups H ,H��G, H� normal, we set Q�
HH�

ª �Q1 ,Q
2
*� with

Q1 as the collection of edges e with Te
H���= ��� and Q2 as the

collection of edges e� with Le�
H����= ���. Then we write ��

H,H�

for �Q
�
HH� and similarly for ≖

Proposition 19. Let ����HG and H ,H��G subgroups

with H� normal. �i� If �, �� are ribbons with ���
HH��� then

	
k�H

F�
kh�k̄,kgH=� 	

k�H

F��
kh�k̄,kgH, �C9�

where h��H�, g�G. �ii� If �, �� are closed ribbons with

� ≖ �
HH��� then

	
k�H

F�
khk̄,kgk̄=� 	

k�H

F��
khk̄,kgk̄. �C10�

where h ,g�G, hgh̄ḡ�H�.
Proof. �i� It is enough to consider �=��� or �=��� with �

as a triangle and then apply Eq. �B9�. �ii� It is enough to
consider that ����=� and then apply Eq. �B32�.

c. Inversions

We finally consider other kind of ribbon transformations
in which basically ribbons are reversed. As in the other cases,
we start introducing suitable relations. For open ribbons �, ��
and R= �R1 ,R

2
*� as above, we write �	R�� if �0�=�1��, �1�

=�0�� and either �i.a� �� ,���� and V
�
*�R

2
* or �i.b� �� ,����

and F��R1. For closed ribbons �, �� and a triangle �, we
write �
R,��� if either �ii.a� �� ,����, � is dual, �� ,� ,����

and V
�
*�R

2
* or �ii.b� �� ,����, � is direct, �� ,� ,���� and

F��R1. For ����HG, we write 	�
HH� for 	R

�
HH� and also


�
HH� for 
R

�
HH�,� if either � is dual and L�

H=�1 or � is direct

and T�
H�=�1.

Proposition 20. Let ����HG and H ,H��G normal sub-
groups with hh�=h�h for any h�H, h��H�. �i� If �, �� are

open ribbons with �	�
H,H��� then

F�
h�,S=�F��

s̄h̄�s,S̄, �C11�

where h��H�, s�S�G /H. �ii� If �, �� are closed ribbons

with �
�
HH��� then

	
k�H�

F�
k̄h�k,k̄Sk=� 	

k�H�

F��
k̄s̄h̄�sk,k̄S̄k, �C12�

where h��H� and s�S�G /H with sgs̄ḡ�H.
Proof. �i.a� This case follows from Eqs. �C2� and �C5�.
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�i.b� There exists ribbons �i and direct ribbons �i� ,�i�, i
=1,2, such that �=�1��1�1� and �=�2��2�2�. Then there exists a
direct triangle � so that Eq. �C1� applies to �1 ,�2. Moreover,
for s=�0�1 we have �s=��2��1� and Bs

H=�1. Then using also

Eq. �B9� we have L�
h�=�	m�GT

�1�
m L�1

m̄h�m=�	k,l�GF�2

lk̄h̄�kl̄,lT
�1��
k

=�	l�GF
�2�2�
lh̄�l̄,lT

�1���2�
H =�	l�GF��

lh̄�l̄,l. Together with Eq. �C5�, this

gives Eq. �C11�. �ii.a� From Eq. �C2� we have T�
g=�T��

ḡ . We
can set �=���, ��=���̄� with �� as a direct triangle. The strip
�0= �̄���� is a nice closed strip and indeed a block. Then

Eqs. �B9� and �C5� give L�
h�=�	k�GT�

k L����̄
k̄h̄�k

=�	k,l�GT�
k L�

k̄h̄�kF��
k̄h̄�k,lL�̄

l̄k̄h̄�kl. But Eq. �C1� implies L�
g

=	k�GT��
k L�̄

k̄ḡk for any g�G and then L�
h�=�	k�GT�

k L��
k̄h̄�k. The

result follows. �ii.b� From Eq. �C1� we have L�
h�

=�	k,l�GF��
lk̄h̄�kl̄,lT�

k. We can set �=���, ��=���̄� with �� as a
dual triangle. The strip �0= �̄���� is a nice closed strip and
indeed a block. Then Eqs. �B9� and �C6� give T�

gH=�T�
gH

=�T����̄
ḡH =�	k�H�T�

kT��
k̄ḡkH. Using Eq. �B13� the result follows.

2. Deformations in F�, K�, J�, and K��

We are now in position to discuss the transformation
properties of the ribbon operator algebras introduced in Ap-
pendix B. We distinguish three cases, which depend on the
values of the subgroups N ,M that label Hamiltonian �35�.

a. Original Kitaev model: N=1, M=G

In this case we are interested in the algebras F� and K�.
As for the first, open ribbons can be deformed so that if �
��

1G�� then F�
h,g=�F��

h,g. That is, the action of F� is invariant
as long as ribbons are deformed without crossing any exci-
tation. They can also be reversed: if �	�

1G�� then F�
h,g

=�F��
ḡh̄g,ḡ. Regarding closed ribbons, the action of K� is in-

variant under deformations ���
1G� or rotations �≖ �

G1�. Closed

ribbon inversions give charge inversion: if �
�
1G�� then

K�
RC=�K��

R̄CC̄, where RC
ªRg �as defined in Appendix A 2�

with rC̄= ḡr̄Cg for some g�G.

b. String tension: N and M normal, N central in M

In this case we are interested in the algebras J�, which
gives the domain-wall fluxes, and K�� , which gives the
charges. The action of J� is invariant under deformations
which do not cross confined excitations ���

MN�, even if ends

change as long as they do not cross a domain wall �≖ �
MN�.

Inversions �	�
MN� give domain flux inversion: �
 , t� goes to

�
̄t , t̄�. The action of K�� is invariant under deformations

���
NM� or rotations in which the end of � does not cross

domain walls �≖ �
MN�. Charge inversion �
�

NM� is as follows:

�R ,C� goes to �R̄C , C̄� where RC
ªRm with rC̄= m̄r̄Cm for

some m�M.

c. Domain walls: N normal and Abelian

In this case we are only interested in domain-wall fluxes,
that is, in J�. Its action is invariant under deformations
�those allowed by ��

NN�, even if ends change as long as they
do not cross a domain wall ���

MN�. Domain-wall flux inver-

sion �	�
NN� is as follows: �R ,T� goes to �R̄T , T̄�, where RT

ªRrTm with rT̄M = m̄r̄TM for some m�M, so that NT̄

= m̄r̄TNTrTm.

3. Charge types

The previous results about closed ribbon transformations
must be complemented with the following one, which relates
proper closed ribbon operators with local vertex and face
operators. Let N ,M �G be normal subgroups in G with N
central in M and define for R� �NC� �ir and C� �G /N�cj,

Ds
RC

ª

nR

�NC� �	D 	
q�QC

	
d�D


̄R�d�As
qdq̄Bs

qrCq̄, �C13�

where D runs over �NC� �cj.
Proposition 21. Let s be a site, � a closed ribbon, and � a

dual triangle with �s
V�,��. If ����HG is such that Av
M

=�1 for any vertex v�vs in fs and L�
N=�1 then

K�
RC = Ds

RC, �C14�

where R� �NC� �ir, C� �G /N�cj.
Proof. Let s� be the second site of �, so that vs�=vs and e�

does not belong to fs�. The states ��g�ªAv
MBs�

g , g�G,
are such that �s
�g

NM�. Then with the notation of Eq. �C12�

we have 	k�H�F�
k̄h�k,k̄SkBs�

g =	k�H�Bs�
k̄h�kgk̄h̄�kF�

k̄h�k,k̄Sk

=�g	k�H�Bs�
k̄h�kgk̄h̄�kBs

k̄Sk=�g	k�H�As
k̄h�kBs

k̄SkBs�
g . Since ���

=	gBs�
g ��g�, the result follows. �

APPENDIX D: LOCAL DEGREES OF FREEDOM

In this appendix we give the details of the results indi-
cated in Sec. II D. Choose any C� �G�cj and two indices i, i�
and define

�n� ª �n;i,i�� ª F�
c̄i,q̄inqi���G� , �D1�

where ��G� is a ground state of HG �1�. Let V be the space
with basis �n�, n�NC. Then there exists an evident isomor-
phism p :C�NC�→V. For n ,n��NC and s=�0�, s�=�1�,
consider the operators

an,n� ª As
q̄inqiA

s�

q̄i�n�qi�. �D2�

They give a representation a, NC�NC→GL�V� because

an1,n2
�n� = �n1nn̄2� , �D3�

so that if R: NC�NC→GL�C�NC��, is the representation of
Appendix A, we have an1,n2

p= pRn1,n2
. This has several con-

sequences. First, if we define in accordance with Eq. �A15� a
basis for V with elements,
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�R; j j�� ª 	
n�NC

�̄R
jj��n��n� , �D4�

then in the new basis

an,n��R; j j�� = 	
k,k�=1

nR

�R
kj�n��̄R

k�j��n���R;kk�� . �D5�

In C�NC� from Eq. �A19� we get

eR
uveR�

j j�eR
v�u� = �R,R��v,j�v�,j�eR

uu�, �D6�

eReR�
j j� = eR�

j j�eR = �R,R�eR
jj�, �D7�

which through the isomorphism p give

aR
uva

R̄
�u�v��R�; j j�� = �R,R��v,j�v�,j��R;uu�� , �D8�

aR�R�; j j�� = a
R̄
� �R�; j j�� = �R,R��R; j j�� , �D9�

where

aR
uv
ª

nR

�NC� 	
n�NC

�̄R
uv�n�an,1, �D10�

aR�
uv
ª

nR

�NC� 	
n�NC

�̄R
uv�n�a1,n, �D11�

aR = 	
u=1

nR

aR
uu, aR� = 	

u=1

nR

aR�
uu. �D12�

Note that aR
uv, aR�Ds, aR�

uv, aR� �Ds�.
Finally, from Eq. �B42� we have

Bs
ckB

s�

c̄k��n;i,i�� = �k,i�k�,i��n;i,i�� �D13�

and from Eq. �B41�

As
q̄kqiA

s�

q̄k�qi��n;i,i�� = �n;k,k�� . �D14�

Note that �R ; j j�� is just a shorthand for Eq. �21�. Finally,
these results must be complemented with proposition 21.

APPENDIX E: SINGLE-QUASIPARTICLE STATES

Only in a surface of nontrivial topology can we find two
closed ribbons �, �� such that �� ,���+ �see Fig. 15�. When
such ribbons exist, we can construct for any h ,g�G the
state

��hg� ª F�
hgL��

ḡ 

v

Av�1� . �E1�

The state ��� is not zero because in Eqs. �B21� and �B45�

L��
g L�

h̄ ��hg� = 

v

Av�1� . �E2�

At most, it can have an excitation at �v , f�=��=���. In fact,
in Eq. �B45�

Bf��hg� = �gh,hg��hg� , �E3�

showing that for non-Abelian groups single-quasiparticle ex-
citations exist.

APPENDIX F: CONDENSATION

In this appendix we give the details of the calculations of
certain expected values for ribbon operators �F� for a ground
state of Hamiltonian �35� for N�M �G subgroups of G, N
normal. Such ground states are characterized by conditions
�36�. For S�G, g�G we introduce the notation

�g,S ª �gS,S. �F1�

Proposition 22. Let h ,g�G, n�N and ���, �����HG
satisfy Eq. �36�.

�i� For an arbitrary ribbon �

F�
h,g��� = �g,MF�

hn,g��� , �F2�

����F�
h,g��� = �h,M����F�

h,gn��� . �F3�

�ii� If � is an open ribbon

F�
NM��� = ��� , �F4�

����F�
h,g��� = �h,N�g,M

1

�M�
������ . �F5�

�iii� If � is a boundary ribbon

F�
MN��� = ��� , �F6�

����F�
h,g��� = �h,M�g,N

1

�N�
������ . �F7�

Proof. �i� If � is a triangle this is a direct consequence of
the identities L�

nL�
N=L�

N, T�
gT�

M =�g,MT�
gT�

M, T�
ML�

hT�
M

=�h,MT�
ML�

hT�
M, and L�

NT�
gL�

N=L�
NT�

gnL�
N. For general ribbons,

just apply Eq. �B9�. �ii� From �i� we get F�
NM���=F�

1G���
= ��� using Eq. �B16�. Let si=�i� and set �·�ª ���� · ���. Then
from Eqs. �36� and �B42� we have �F�

h,g�= �Bs0

N F�
h,g�

= �F�
h,gmBs0

Nh�=�h,N�F�
h,gm� and for m�M from Eqs. �36� and

�B41� we have �F�
h,g�= �F�

h,gAs1

m�= �As1

mF�
h,gm�= �F�

h,gm�. Thus

FIG. 15. In a torus we can find a pair of closed ribbons �, ��
such that they form a crossed joint, �� ,���+. This is not possible in
a sphere.
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�F�
h,g�=�g,M�h,N�F�

1,1� and the result follows since �F�
1,M�

= �F�
1,G�= �1�. �iii� Using the notation of Appendix C, p� en-

closes a disk R�R�
N so that F�

MN���= ���. Also, L�
m���= ���

for any m�M. To check this, suppose, for example, that the
edges E�

� lie outside R and choose for each vertex v in R a
ribbon �v with p�v

a path inside R from v0=v�0� to v. If we

set A�
m=Av0

m 
v�v0
	kT�v

k Av
k̄mk, with the product running over

all vertices in R, one can check that ���=Am���=L�
m���. The

other case is similar. Thus, for m�M we get �F�
h,g�

=�g,N�F�
hm,g�, so that �F�

h,g�=�g,N�h,M�F�
1,1�. The result fol-

lows since �F�
1,N�= �F�

1,G�= �1�.
A state satisfying Eqs. �F4� and �F6� for all open ribbons

� and boundary ribbons � cannot contain vertex, face, or
edge excitations. Therefore, these conditions characterize
ground states. We proceed to check Eq. �49�; the derivation
of Eq. �56� is similar. From Eq. �B70� and �F7� we get

�K�
DC� =

�C � N�
�N��G� 	

g�G

�D � ḡMg� , �F8�

where D� �NC�cj, C� �G�cj. This together with Eq. �B75�
give Eq. �49� because if eM↑ is the induced representation in
G of the identity representation in M,


eM↑�g� =
1

�M� 	k�G

�g,k̄Mk. �F9�

As for Eq. �55�, from Eq. �F5� we have

�M�� 	
n�NC

�R
jj��n�F�

c̄i,q̄inqi� = �ci,N 	
n�Mc

i,i�

�R
jj��n� , �F10�

where Mc
i,i�

ªNC�qiMq̄i. If Mc
i,i� is empty, we are done.

Mc
i,i�=Mc

i,is for some s�NC, so that 	n�Mc
i,i��R�n�

=	n�Mc
i,i�R�n��R�s�. But63 	n�Mc

i,i�R�n�=0 if �
R ,1�MC
i,i =0.
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